q6h - every six hours
prn- as needed
Chat with our AI personalities
Words that start with R and end with N are:raccoonrainradonranrationravenreasonrecessionreckonreflectionrefrainrefrigerationreinremainreunionribbonriboflavinripenroanrobinRomanrottenruffianruinrun
Ndsi stands for N d s i i u c n n a r t t l e e e e r n n n d e o t / I standing for 'eye' as in camera.
pronunciation
what is DENR
Those letters will spell the word arrangements.
Oh, hello there! "Pxrxn" in math usually refers to the product of two numbers. It's like mixing colors on your palette to create a beautiful painting - when you multiply two numbers together, you're creating a new number that is the result of their combination. Just like how each brushstroke adds depth to a painting, each multiplication helps us understand how numbers work together. Just remember to take your time and enjoy the process of learning math - there are no mistakes, just happy little accidents!
nCr + nCr-1 = n!/[r!(n-r)!] + n!/[(r-1)!(n-r+1)!] = n!/[(r-1)!(n-r)!]*{1/r + 1/n-r+1} = n!/[(r-1)!(n-r)!]*{[(n-r+1) + r]/[r*(n-r+1)]} = n!/[(r-1)!(n-r)!]*{(n+1)/r*(n-r+1)]} = (n+1)!/[r!(n+1-r)!] = n+1Cr
This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.
The r+1 th term is nCr(-x)r where r = 0, 1, 2, ... , n. and where nCr = n!/[r!*(n-r)!]
It isnC0*A^n*b^0 + nC1*A^(n-1)*b^1 + ... + nCr*A^(n-r)*b^r + ... + nCn*A^0*b^n where nCr = n!/[r!*(n-r)!]
Binomial Theorem: 1n + nC1*1n-1*r + nC2*1n-2*r2+......+nCn-1*1*rn-1 + rn Or (1+r)n = 1 + n*r + n(n-1)/2! * r2 + n(n-1)(n-2)/3! * r3 + .......... n(n-1)...(n-k)/k! * rk if n < 1 as you cannot calculate the combinations that easily. This gives an accurate approximation provided that abs(x) < 1.
Emi = l * r * ((1 + r)^n / (1 + r)^n - 1) * 1/12 where l = loan amt r = rate of interest n = no of terms
n(1-R)L is an expression: it is not a formula.
T r+1 = (n / r) (a ^n-r) x (b)^r
An infinite geometric series can be summed only if the common ratio has an absolute value less than 1. Suppose the sum to n terms is S(n). That is, S(n) = a + ar + ar2 + ... + arn-1 Multipying through by the common ratio, r, gives r*S(n) = ar + ar2 + ar3 + ... + arn Subtracting the second equation from the first, S(n) - r*S(n) = a - arn (1 - r)*S(n) = a*(1 - rn) Dividing by (1 - r), S(n) = (1 - rn)/(1 - r) Now, since |r| < 1, rn tends to 0 as n tends to infinity and so S(n) tends to 1/(1 - r) or, the infinite sum is 1/(1 - r)
Suppose you have n trials of an experiment in which the probability of "success" in each trial is p. Then the probability of r successes is: nCr*pr*(1-p)n-r for r = 0, 1, ... n. nCr = n!/[r!*(n-r)!]
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)