For single phase, KVA = (line to ground) * (phase current). A 75kVA 480 to 208Y/120 volt transformer is a fairly common transformer. I assume this is the type of transformer you are referring to. 75k / 120 = 625 Amps. As an FYI, the 208Y voltage is the line to line voltage, which is equal to (phase 1) - (phase 2), where the phases are separated by 120 degrees, thus (phase 1) * 1.732 For three phase, kVA = (line to line voltage) * (phase current) *(sqrt 3), 75k / 208 / 1.732 = 208 Amps.
KVA means thousands (K) of volts (V) times Amperes (A). A 100 KVA transformer can deliver 1000 amps at 100 volts or 500 amps at 200 volts etc.
A transformer's capacity is rated in volt amperes(V.A). This is the product of the secondary winding's current rating and voltage rating.
Since this transformer has a ratio of 1:2 the load current on the 480V side just has to be doubled. 85 x 2 = 170A on the primary. 40.8 KVA transformer. To prove this just find the KVA of both sides and they should be equal.
In 1600 kva transformer we provide NGR (Neutral grounding resistance)
The amps you can get from a 500 kVA transformer would depend on the voltage of the transformer's output. To calculate amperage, you can use the formula: Amps = Power (kVA) / Voltage. For example, if the output voltage is 480V, you would get approximately 1041 amps (500 kVA / 480V).
To calculate the amperage in the secondary side of a transformer, you can use the formula: Amps = kVA / (Volts x Sqrt(3)). For a 250 kVA transformer with a 220-volt secondary, the amperage will be approximately 660.4 Amps.
It depends on the rated voltage of its secondary.
Take the KVA and divide it by the voltage. 25/.230 = 109 amps. The transformer can put out up to 50% more that its rated for short durations. So you could get around 150 amps out of a 25 Kva tranformer in a worst case situation.
kva k-kilo v-voltage a-amps(current)
Yes, but your input current is going to be high at 133 amps. The output of the transformer is not going to be 16 KVA, that is the rating of the transformer.
kva k-kilo v-voltage a-amps(current)
Each phase supplies 15 kVA. The primary has a line-to-neutral voltage of 277 v so the line current is 15,000 / 277 or 54 amps. The secondary has a line-to-neutral voltage of 120v so the current is 15,000/120 or 125 amps.
The equation for amperage when the kilowatts are known is Amps = kVA x 1000/1.73 x Volts.The electrical code states that a feeder for a transformer has to be rated at 125% for the primary and secondary load amperages.The amperage on the primary needed to supply a 70 KVA three phase transformer to its full capacity at 600 will be 68 amps. 68 x 125% = 85 amps. A #4 copper conductor with an insulation factor of 90 degrees C is rated at 95 amps.The amperage on the secondary needed to supply a 70 KVA three phase transformer to its full capacity at 480 will be 84 amps. 84 x 125% = 105 amps. A # 3 copper conductor with an insulation factor of 90 degrees C is rated at 115 amps.
Yes, a 30 amp disconnect switch can be used for a 30 kVA transformer. The 30 amp rating refers to the switch's capacity to safely handle 30 amps of current, which is sufficient for a 30 kVA transformer's load. Just make sure to follow the manufacturer's guidelines and electrical codes when selecting and installing the disconnect switch.
The primary current of a transformer depends upon the secondary current which, in turn, depends upon the load supplied by the transformer. There is not enough information in the question to determine the rated primary and secondary currents of the transformer.
For single phase, KVA = (line to ground) * (phase current). A 75kVA 480 to 208Y/120 volt transformer is a fairly common transformer. I assume this is the type of transformer you are referring to. 75k / 120 = 625 Amps. As an FYI, the 208Y voltage is the line to line voltage, which is equal to (phase 1) - (phase 2), where the phases are separated by 120 degrees, thus (phase 1) * 1.732 For three phase, kVA = (line to line voltage) * (phase current) *(sqrt 3), 75k / 208 / 1.732 = 208 Amps.