answersLogoWhite

0


Best Answer

E=hf and E= (hc)/w

E=energy

h=planck's constant

f=frequency of light

c= speed of light

w= wavelength of light (normally represented by the greek letter lambda)

User Avatar

Wiki User

13y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

1mo ago

The energy of light is directly proportional to its frequency. This relationship is described by Planck's equation: E = hν, where E is the energy of the light, h is Planck's constant, and ν is the frequency of the light. This means that light with higher frequency carries more energy.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the relationship between the energy in light and the frequency of light?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

What is the relationship between frequency and energy of a light wave?

The frequency of a light wave is directly proportional to its energy. This means that as the frequency of a light wave increases, its energy also increases. In other words, light waves with higher frequencies have higher energy levels.


What is the relationship between the frequency o a light wave and its energy?

The energy of a light wave is directly proportional to its frequency. This means that light waves with higher frequencies have higher energies, while light waves with lower frequencies have lower energies. This relationship is described by Planck's equation E = h*f, where E is energy, h is Planck's constant, and f is frequency.


What is the relationship between the frequency and the velocity of electromagnetic energy?

The frequency of electromagnetic energy is directly proportional to its velocity. As the frequency increases, the velocity of the electromagnetic energy also increases. This relationship is a fundamental property of electromagnetic waves, such as light.


Which best describes the relationship between photon energy and the color of light?

The color of light is directly related to the energy of its photons. Light with higher photon energy appears bluer, while light with lower photon energy appears redder. This relationship is governed by the electromagnetic spectrum and the frequency of light.


What is the relationship between frequency and kinetic energy in photoelectric effect?

In the photoelectric effect, increasing the frequency of incident light increases the kinetic energy of the emitted electrons. This is because higher frequency light photons carry more energy, which can be transferred to the electrons during the photoelectric effect.

Related questions

What is the relationship between frequency and energy of a light wave?

The frequency of a light wave is directly proportional to its energy. This means that as the frequency of a light wave increases, its energy also increases. In other words, light waves with higher frequencies have higher energy levels.


What is the relationship between the wavelength and the frequency of radiant energy?

Wavelength and frequency are inversely proportional.


What is the relationship between the frequency o a light wave and its energy?

The energy of a light wave is directly proportional to its frequency. This means that light waves with higher frequencies have higher energies, while light waves with lower frequencies have lower energies. This relationship is described by Planck's equation E = h*f, where E is energy, h is Planck's constant, and f is frequency.


Why won't a very bright beam of red light impart more energy to an electron than a feeble beam of violet light?

Ok, so this goes back to the inverse relationship between wavelength and frequency ( energy). As wavelength increases , frequency decreases, the relationship between the two is a inverse relationship. the Red light, wavelength of approx. 700 m^-7 , has a greater wavelength then of the blue light, 400m ^-7. This means , due to frequency and wavelength having an inverse relationship, blue light has a greater frequency (energy) than red light. This is why blue light, no matter how dim, will impart more energy to an electron , then a red light would.


What is the relationship between the frequency and the velocity of electromagnetic energy?

The frequency of electromagnetic energy is directly proportional to its velocity. As the frequency increases, the velocity of the electromagnetic energy also increases. This relationship is a fundamental property of electromagnetic waves, such as light.


Which best describes the relationship between photon energy and the color of light?

The color of light is directly related to the energy of its photons. Light with higher photon energy appears bluer, while light with lower photon energy appears redder. This relationship is governed by the electromagnetic spectrum and the frequency of light.


What is the relationship between frequency and kinetic energy in photoelectric effect?

In the photoelectric effect, increasing the frequency of incident light increases the kinetic energy of the emitted electrons. This is because higher frequency light photons carry more energy, which can be transferred to the electrons during the photoelectric effect.


What is energy of light related to?

The energy of light is related to its frequency, with higher frequency light having higher energy. This relationship is described by Planck's equation, E = h*f, where E is energy, h is Planck's constant, and f is frequency.


Is energy of light directly proportional to frequency?

Yes, the energy of light is directly proportional to its frequency. This relationship is described by Planck's equation, E=hf, where E is the energy of a photon of light, h is Planck's constant, and f is the frequency of the light.


What determines the energy of light?

The energy of light is determined by its frequency or wavelength. Light with higher frequency (shorter wavelength) carries higher energy, while light with lower frequency (longer wavelength) carries lower energy. This relationship is described by Planck's equation, E=hf, where E is energy, h is Planck's constant, and f is frequency.


What is the relationship between a photons energy and its wavelength?

A high energy light will have a shorter wavelength than a low energy light. If the wavelength goes down, then the frequency goes up. When calculating energy in the equation, E=hv, frequency (v) is the variable, not the wavelength. So in the equation, if you wanted a more energy (E), you would have the frequency be large. For the frequency to be big, then the wavelength has to be low.


What is the relationship between wavelength of light and the energy of light?

The energy in one photon of any electromagnetic radiation is directly proportionalto its frequency, so that would be inversely proportional to its wavelength.Note: There is no energy in the protons of light, since light has no protons.