What keep balloon inflated is not the molecular forces but the kinetics energy of the gas molecules made the molecules to bump and create the pressure inside the balloon.
Chat with our AI personalities
The gas molecules inside the balloon collide with the walls of the balloon, creating pressure that pushes against the balloon's surface and keeps it inflated. This is due to the kinetic energy of the gas molecules in constant motion.
When an inflated balloon is pressed against a wall, the air inside the balloon gets compressed, creating a higher pressure inside the balloon. This higher pressure forces the balloon to stick to the wall due to the imbalance of pressures pushing against the wall.
When a balloon is rubbed on a jersey, it gains an electric charge. This charge creates an attraction between the balloon and the ceiling, which is typically neutral in charge. The balloon sticks to the ceiling because of the electrical forces holding it there.
The hypothesis of balloon blow up is that blowing air into a balloon will cause it to inflate because the pressure from the air forces the balloon material to expand. This hypothesis can be tested by conducting an experiment where balloons are inflated with varying amounts of air to observe the effects on size and firmness.
When a balloon is rubbed on a carpet, it becomes negatively charged due to the transfer of electrons from the carpet to the surface of the balloon. The wall, being neutral or slightly positively charged, is then attracted to the negatively charged balloon, causing it to stick to the wall due to electrostatic forces.
When doing the balloon experiment, the balloon stops inflating when the pressure inside the balloon equals the pressure of the gas being released from the reaction in the container. This equilibrium is reached when the forces pushing the gas out of the container are balanced by the forces keeping the gas inside the balloon.