answersLogoWhite

0

Well when you swing it or push it it can show rarefctions and even compressions.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
More answers

A slinky can represent a sound wave by demonstrating how the wave moves through compression and rarefaction of the coils. When you pluck one end of the slinky, a wave of compression travels through the coils, mimicking how sound waves travel through air molecules. The stretching and compressing of the slinky represents the vibrations of particles in a medium during the transmission of sound.

User Avatar

AnswerBot

11mo ago
User Avatar

Add your answer:

Earn +20 pts
Q: How a slinky can represent a sound wave?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

How does sound travel through a slinky?

Sound waves travel through a slinky by causing the coils of the slinky to vibrate back and forth. The kinetic energy from these vibrations is transferred along the length of the slinky, allowing the sound wave to propagate. The density and elasticity of the slinky material help in transmitting the sound energy effectively.


What is the disturbance in a slinky wave?

A disturbance in a slinky wave refers to the physical displacement of the coils of the slinky from their equilibrium positions as the wave travels through it. This displacement creates the wave pattern that propagates through the slinky.


Is a slinky wave a transverse or a longitudinal wave?

A slinky wave is a transverse wave. Transverse waves are perpendicular to the direction the wave travels, and in the case of a slinky wave, the coils move back and forth in a direction perpendicular to the wave's propagation.


What happens to the slinky wave when it reaches the second person?

When a slinky wave reaches the second person, the wave is transmitted through the slinky to the second person. The person may feel the wave energy passing through the slinky, causing it to vibrate and potentially move.


How does the propagation of a longitudinal wave sound differ from that of a transverse wave?

The propagation of a longitudinal wave creates sound that moves in the same direction as the wave, like a slinky being pushed and pulled. In contrast, a transverse wave creates sound that moves perpendicular to the wave, like a rope being shaken side to side.