answersLogoWhite

0

It is called a secret for a reason. It is a special privilege reserved for those who are found worthy enough to bear the designation of a Knight.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What symbol would you use when automatically adding a set of numbers?

The capital sigma. The capital sigma. The capital sigma. The capital sigma.


When was Sigma Sigma Sigma created?

Well, darling, Sigma Sigma Sigma was created on April 20, 1898 at Longwood University in Farmville, Virginia. So, if you're ever on a game show and they ask you that question, you can thank me later for making you look like a smarty pants.


Was there ever Sigma Mu Sigma at Lynchburg College?

Sigma Mu Sigma was definitely at Lynchburg College between 1968-1972.


Is 99.999 a 3 sigma limit?

No, 99.999 is not a 3 sigma limit; it corresponds to a 5 sigma limit. In a normal distribution, a 3 sigma limit encompasses approximately 99.73% of the data, while a 5 sigma limit includes about 99.99994%. Therefore, a 5 sigma level indicates a much lower probability of error compared to a 3 sigma level.


How do you find the correlation of n equals 15 Σxi equals 1293 Σyi equals 48.58 Σxiyi equals 4226.2 sx equals 6.9714 and sy equals 0.4236?

To find the correlation coefficient ( r ), use the formula: [ r = \frac{n \cdot \Sigma x_i y_i - \Sigma x_i \cdot \Sigma y_i}{\sqrt{(n \cdot \Sigma x_i^2 - (\Sigma x_i)^2)(n \cdot \Sigma y_i^2 - (\Sigma y_i)^2)}} ] Given ( n = 15 ), ( \Sigma x_i = 1293 ), ( \Sigma y_i = 48.58 ), ( \Sigma x_i y_i = 4226.2 ), ( s_x = 6.9714 ), and ( s_y = 0.4236 ), first calculate ( \Sigma x_i^2 ) and ( \Sigma y_i^2 ) using the relation ( s_x^2 = \frac{\Sigma x_i^2}{n} - \left(\frac{\Sigma x_i}{n}\right)^2 ) and ( s_y^2 = \frac{\Sigma y_i^2}{n} - \left(\frac{\Sigma y_i}{n}\right)^2 ). After obtaining these values, substitute them into the formula for ( r ) to find the correlation coefficient.