The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
One of the infinitely many possible rules for the nth term of the sequence is t(n) = 4n - 1
The 'n'th term is [ 4 - 3n ].
Un = 29 - 9n
Double it minus the previous number.
The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
The nth term in this sequence is 4n + 3.
The nth term of the sequence is 2n + 1.
One of the infinitely many possible rules for the nth term of the sequence is t(n) = 4n - 1
The nth term is 4n-1 and so the next term will be 19
3 11
The nth term of the sequence is (n + 1)2 + 2.
I believe the answer is: 11 + 6(n-1) Since the sequence increases by 6 each term we can find the value of the nth term by multiplying n-1 times 6. Then we add 11 since it is the starting point of the sequence. The formula for an arithmetic sequence: a_{n}=a_{1}+(n-1)d
It works out as -5 for each consecutive term
The 'n'th term is [ 4 - 3n ].
The 'n'th term is [ 4 - 3n ].
The 'n'th term is [ 4 - 3n ].