answersLogoWhite

0

The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Algebra

When is it better to have the quadratic function in vertex form instead of standard form?

The quadratic function is better represented in vertex form when you need to identify the vertex of the parabola quickly, as it directly reveals the coordinates of the vertex ((h, k)). This form is particularly useful for graphing, as it allows you to see the maximum or minimum point of the function immediately. Additionally, if you're interested in transformations such as shifts and reflections, vertex form clearly outlines how the graph is altered.


Find equation what parabola its vertex is 0 0 and it passes through point 2 12 express the equation in standard form?

Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2


What is the difference between scientific notation and standard form?

Scientific notation (also called standard form or exponential notation) is a way of writing numbers that accommodates values too large or small to be conveniently written in standard decimal notation.


How do you graph y equals x squared minus 4?

its a simple parobola symmetric about y axis, having its vertex at (0,-4). we can make its graph by changing its equation in standard form so that we can get its different standard points like vertex, focus, etc.


How are quadratic equation in standard form rewritten in vertex form?

A quadratic equation in standard form, ( ax^2 + bx + c ), can be rewritten in vertex form, ( a(x-h)^2 + k ), through the process of completing the square. First, factor out ( a ) from the ( x^2 ) and ( x ) terms, then manipulate the equation to create a perfect square trinomial inside the parentheses. The vertex ( (h, k) ) can be found from the values derived during this process, specifically ( h = -\frac{b}{2a} ) and ( k ) can be calculated by substituting ( h ) back into the original equation.

Related Questions

Convert between standard and vertex form?

2


What is the difference between standard and exponetial form?

if u write 100000 this is standard form. and if you write 104 this exponential form


What is the difference between a standard form recipe and a descriptive form recipe?

trhe6c6tshaz


What are the advantages and disadvantages of each form of a formula of completing the square?

Completing the square can be expressed in two forms: the vertex form (y = a(x - h)^2 + k) and the standard form (y = ax^2 + bx + c). The vertex form highlights the vertex of the parabola, making it easy to graph and identify transformations, while the standard form is useful for identifying the coefficients and analyzing the general shape. However, the vertex form can be less intuitive for solving equations, whereas the standard form may require more steps for graphing or identifying the vertex. Each form serves different purposes depending on the problem at hand.


How do you convert standard form to vertex form?

y= -5/49(x-9)^2+5


What different information do you get from vertex form and quadratic equation in standard form?

The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.


What is the difference between the slope intercept form and the standard form?

Slope intercept form is displayed as y=mx+b.


What is the standard form of the equation of the parabola with vertex 00 and directrix y4?

Assuming the vertex is 0,0 and the directrix is y=4 x^2=0


How do you find the vertex of an equation in standard form?

To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).


How do you find the vertex of a parabola when the equation is in standard form?

To find the vertex of a parabola in standard form, which is given by the equation ( y = ax^2 + bx + c ), you can use the formula for the x-coordinate of the vertex: ( x = -\frac{b}{2a} ). Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. The vertex will then be at the point ( (x, y) ).


When is it better to have the quadratic function in vertex form instead of standard form?

The quadratic function is better represented in vertex form when you need to identify the vertex of the parabola quickly, as it directly reveals the coordinates of the vertex ((h, k)). This form is particularly useful for graphing, as it allows you to see the maximum or minimum point of the function immediately. Additionally, if you're interested in transformations such as shifts and reflections, vertex form clearly outlines how the graph is altered.


How is the vertex form of an equation different from the standard form and what values change the shape of the graph?

The vertex form of a quadratic equation is expressed as ( y = a(x-h)^2 + k ), where ((h, k)) is the vertex of the parabola, while the standard form is ( y = ax^2 + bx + c ). In vertex form, the values of (a), (h), and (k) directly influence the shape and position of the graph; specifically, (a) determines the width and direction of the parabola, while (h) shifts it horizontally and (k) shifts it vertically. Changes to (a) affect the steepness, while altering (h) and (k) moves the vertex without changing the graph's shape.