answersLogoWhite

0

a dynaset object can be used to retrieve information from a recordset and use the resault of the query to then edit the records and it also can get resaults from more than one table. On the other hand the snaphot gets information from only one table on the query and the data can not be edited or updated

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
JudyJudy
Simplicity is my specialty.
Chat with Judy
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran

Add your answer:

Earn +20 pts
Q: What is the difference between Dynaset and snapshot in VB?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

Volume of a truncated rectangular based pyramid?

(1)Best formula to use is as follows -V = h/3(Areatop + √(Areatop*Areabottom) + Areabottom)(2)To find (h) using a tape measure -Areatop => bdAreabase => acLateral edge remaining => e (from top corner to base corner)k = 1 - √(bd/ac)H= √([e/k]² - [a/2]² - [c/2]²)h = HkV = H/3*(ac-bd+bd*k)(3)Lets say Top is a rectangle with sides b & dand bottom is a rectangle with sides a & c respectively.Let height be hin that case the volume of Truncated Pyramid with rectangular base will be -V = 1/3((a²c-b²d)/(a-b))hBUT BE CAREFUL - a,b,c,d are not all independent variables (one depends on the others) so this answer is misleading!!!Proof -Suppose the height of Full Pyramid is HFrom parallel line property(H-h)/H = b/aRearrangingH = ah/(a-b) --------------------(1)AlsoSince V=1/3 Base area X HeightVolume of full pyramid = 1/3 X ac X HVolume of removed Pyramid = 1/3 X bd X (H-h)So volume of truncated part V = 1/3(acH-bd(H-h))=1/3((ac-bd)H + bdh)From (1)V = 1/3((ac-bd)ah/(a-b) + bdh)reducing and rearranging we getV = 1/3((a²c-b²d)/(a-b))h(4)In case the truncated solid forms a prism instead, we have following formula -V = ( h/6)(ad + bc + 2ac + 2bd)Proof -Fig(1)Fig(2)Lets divide the fig(1) into four different shapes as shown in fig(2)VA = Volume of cuboid = bdhVB = Volume of prism after joining both Bs= ½ X base X height X width = ½ (a-b) (d)(h)VC = Volume of prism after joining both Cs = ½ X base X height X width = ½ (c-d) (b)(h)VD = Volume of rectangular pyramid after joining all Ds = 1/3 X base area X height =1/3 (a-b) (c-d) hThen V = VA + VB + VC + VDOr, V = bdh + 1/2(a-b)dh +1/2(c-d)bh + 1/3(a-b)(c-d)hArranging and simplifying we get -V = ( h/6)(ad + bc + 2ac + 2bd)