answersLogoWhite

0

emf is present mainly in battery and potential difference is mainly present in circuit.

emf is greater than p.d and p.d is greater than emf.......the units of both are Volt.....

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between EMF and potential difference in an electrical circuit?

The relationship between EMF (electromotive force) and potential difference in an electrical circuit is that EMF is the total energy supplied by a source, while potential difference is the energy transferred per unit charge as it moves through the circuit. In simpler terms, EMF is the total push provided by the power source, while potential difference is the push experienced by the charges as they flow through the circuit.


Can the potential difference across a battery be greater than its EMF?

If the emf of a battery is E Volt, the potential difference across a battery is given byV = E -I r where I is the current in the circuit and r is the inetrnal resistance.Hence E and V will be equal only when I = 0.The maximum potential difference across the battery will be equal to E only if I = 0.In gnereral potential difference can be equal or less than the emf.E.m.f can never exceed the potential difference.=====================================A battery charger is a device used to put energy into a secondary cell or (rechargeable) batteryby forcing an electric current through it.Hence to charge a battery another source of emf is needed.The combined emf is now will be (E - E1) where E is the emf of the battey in quesiton and E 1 is the emf of the external source used to charge the battery.Note that E-E1 will be negative in sign.======================================...A battery is charged only when its emf is less than its maximum emf.Suppose that the maximum emf of a cell is 1.5V. The battery should be charged only when its emf is less than 1.5 V say 0.5 V.To charge the cell we use a different source of emf E1 say 3V.The positive of the second source is connected to the negative of the cell so that theCombined emf is now 0.5 - 3 = -2.5V.The negative sign indicates that the emf is opposite to the emf of the cell which is 0.5V.Since the cell is getting charged, the difference in emf is gradually reduced to zero when the cell is fully charged.In modern charging units there are provisions so that the cell is never allowed to be over charged, even if the charging unit is in on for about 12 hours.When the cell is fully charged, (that is when the emf of the cell is now 1.5V), the potential difference between either the second source or cell will be zero.Taking into consideration the sign of the emf and the direction of current through the cell and the sign of the potential difference, the potential difference will be always less than the emf of the cell (which gradually increases while charging).Note that the potential difference is negative if the emf of the cell is taken as positive.Also note that the cell is charged only when its emf is less than its maximum e.m.f


Can terminal potential difference be greater than the emf supplied?

No, the terminal potential difference cannot be greater than the emf supplied. The emf represents the maximum potential difference that the cell or battery can provide, while the terminal potential difference is the actual potential difference across the terminals when a load is connected.


What is the difference between electrical potential and electromotive force?

Electrical potential refers to the electric potential energy per unit charge at a point in an electric field, measured in volts. Electromotive force (emf) is the energy per unit charge supplied by a source of electrical energy, such as a battery, to drive current through a circuit, also measured in volts. Essentially, electrical potential is a property of a point in the field, while emf is the force that drives the flow of charge.


Is potential difference always less than emf of the cell?

No. Because during charging process of a battery current flows in opposite direction to the discharging/consumption. so equation Emf=P.d. +Ir is changed to Emf=p.d. +Ir. Hence during charging process of a battery Potential difference is greater than electromotive force.

Related Questions

What is the relationship between EMF and potential difference in an electrical circuit?

The relationship between EMF (electromotive force) and potential difference in an electrical circuit is that EMF is the total energy supplied by a source, while potential difference is the energy transferred per unit charge as it moves through the circuit. In simpler terms, EMF is the total push provided by the power source, while potential difference is the push experienced by the charges as they flow through the circuit.


Difference between voltage and emf?

'Voltage' is simply another term for 'potential difference', and an electromotive force is the open-circuit, or no-load, potential difference of a source such as a battery or generator.


Another name for EMF?

"Potential difference" or "Voltage".


Why volt meter is always placed in parallel?

Because the quantity it measures is 'EMF' or 'potential difference', that is,the difference in potential between two points. There may be 1 or 1,000circuit components between the two points.


What is the potential difference between two points in a circuit is called?

Voltage drop


When is the terminal potential difference of a battery greater than its emf?

When it is being loaded.


Can the potential difference across a battery be greater than its EMF?

If the emf of a battery is E Volt, the potential difference across a battery is given byV = E -I r where I is the current in the circuit and r is the inetrnal resistance.Hence E and V will be equal only when I = 0.The maximum potential difference across the battery will be equal to E only if I = 0.In gnereral potential difference can be equal or less than the emf.E.m.f can never exceed the potential difference.=====================================A battery charger is a device used to put energy into a secondary cell or (rechargeable) batteryby forcing an electric current through it.Hence to charge a battery another source of emf is needed.The combined emf is now will be (E - E1) where E is the emf of the battey in quesiton and E 1 is the emf of the external source used to charge the battery.Note that E-E1 will be negative in sign.======================================...A battery is charged only when its emf is less than its maximum emf.Suppose that the maximum emf of a cell is 1.5V. The battery should be charged only when its emf is less than 1.5 V say 0.5 V.To charge the cell we use a different source of emf E1 say 3V.The positive of the second source is connected to the negative of the cell so that theCombined emf is now 0.5 - 3 = -2.5V.The negative sign indicates that the emf is opposite to the emf of the cell which is 0.5V.Since the cell is getting charged, the difference in emf is gradually reduced to zero when the cell is fully charged.In modern charging units there are provisions so that the cell is never allowed to be over charged, even if the charging unit is in on for about 12 hours.When the cell is fully charged, (that is when the emf of the cell is now 1.5V), the potential difference between either the second source or cell will be zero.Taking into consideration the sign of the emf and the direction of current through the cell and the sign of the potential difference, the potential difference will be always less than the emf of the cell (which gradually increases while charging).Note that the potential difference is negative if the emf of the cell is taken as positive.Also note that the cell is charged only when its emf is less than its maximum e.m.f


Can terminal potential difference be greater than the emf supplied?

No, the terminal potential difference cannot be greater than the emf supplied. The emf represents the maximum potential difference that the cell or battery can provide, while the terminal potential difference is the actual potential difference across the terminals when a load is connected.


What symbol is used to measure potential difference?

V which abbreviates the word volt, which is the unit of measure of the difference in electromotive force (EMF), (or electric potential) between two points of contact; the resulting voltage difference could be direct current (DC) or alternating current (AC) depending on the source of the voltage difference.


What are the differences between emf and voltage drop?

emf and voltageAnswerElectromotive force is the potential difference created by a source, such as a battery or generator, when it is not connected to a load -in other words, on 'open circuit'.Voltage drop is the potential difference across a load, such as a resistor, which causes current to flow through that load.A voltage drop occurs, internally, in batteries and generators, when they are supplying a load. The battery or generator's terminal voltage, when supplying a load, is its e.m.f. less its internal voltage drop.


What is the term for he phenomenon of emf development between two different metals placed in contact?

The term for the phenomenon of emf development between two different metals placed in contact is called the thermoelectric effect. This effect occurs because of the temperature difference between the two metals, which creates a potential difference or voltage.


What unit would be used to measure the potential difference between two poles of a battery?

The volt.The volt.The volt.The volt.