yes, that is correct
(p->q) and (q->r) then (p->r)Piano rols
If P is 50% of Q, this means that P is half the value of Q. Similarly, if Q is 50% of R, then Q is half the value of R. Therefore, P is 25% of R, as it is 50% of Q, which is itself 50% of R. Thus, we can conclude that P is less than both Q and R.
The statement "if p, then q; and if q, then r; therefore, if p, then r" describes the logical reasoning known as the transitive property. More formally, it can be expressed in symbolic logic as "p → q, q → r, therefore p → r." This is a fundamental concept in logic that illustrates how relationships can be inferred through a chain of implications.
The answer is Q.
The statement "If p implies q and q implies r, then p implies r" is best described as the transitive property of implications in logic. This principle is fundamental in propositional logic and can be expressed symbolically as ( (p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r) ). It highlights how the relationship between propositions can be extended through a chain of implications.
Unfortunately, the browser used for posting questions is hopelessly inadequate for mathematics: it strips away most symbols. All that we can see is "If p q and q r then p r.?". There is no operator between the variables. Some operators are transitive, others are not. In the case of the operator "is not equal to", the answer is that it depends. In the case of "is the parent of" the answer is no.
Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r
Ifp < q and q < r, what is the relationship between the values p and r? ________________p
If P is 50% of Q, this means that P is half the value of Q. Similarly, if Q is 50% of R, then Q is half the value of R. Therefore, P is 25% of R, as it is 50% of Q, which is itself 50% of R. Thus, we can conclude that P is less than both Q and R.
A rational number is a number of the form p/q where p and q are integers and q > 0.If p/q and r/s are two rational numbers thenp/q + r/s = (p*s + q*r) / (q*r)andp/q - r/s = (p*s - q*r) / (q*r)The answers may need simplification.
P=q/r* * * * *The correct answer is P = k*q/r where k is the constant of proportionality.
The statement "P and Q implies not not P or R if and only if Q" can be expressed in logical terms as ( (P \land Q) \implies (\neg \neg P \lor R) \iff Q ). This can be simplified, as (\neg \neg P) is equivalent to (P), leading to ( (P \land Q) \implies (P \lor R) \iff Q ). The implication essentially states that if both (P) and (Q) are true, then either (P) or (R) must also hold true, and this equivalence holds true only if (Q) is true. The overall expression reflects a relationship between the truth values of (P), (Q), and (R).
Two fractions are similar if they have the same denominator.So if p/r and q/r are two such fractions, then p/r + q/r = (p+q)/r.
The statement "if p, then q; and if q, then r; therefore, if p, then r" describes the logical reasoning known as the transitive property. More formally, it can be expressed in symbolic logic as "p → q, q → r, therefore p → r." This is a fundamental concept in logic that illustrates how relationships can be inferred through a chain of implications.
tan x
The answer is Q.
p/q * r/s = (p*r)/(q*s)
If a is rational then there exist integers p and q such that a = p/q where q>0. Similarly, b = r/s for some integers r and s (s>0) Then a*b = p/q * r/s = (p*r)/(q*s) Now, since p, q r and s are integers, p*r and q*s are integers. Also, q and s > 0 means that q*s > 0 Thus a*b can be expressed as x/y where p and r are integers implies that x = p*r is an integer q and s are positive integers implies that y = q*s is a positive integer. That is, a*b is rational.