Because the space charge region or depletion region is small in germanium compared to silicon hence leakage current is more in germanium than silicon
Chat with our AI personalities
The higher leakage current in germanium compared to silicon is mainly due to its lower bandgap energy, which allows more thermally generated carriers to flow through at room temperature. Additionally, germanium has lower electron mobility and higher intrinsic carrier concentration than silicon, contributing to increased leakage current.
Germanium diodes have a lower forward voltage drop compared to silicon diodes, making them suitable for low voltage applications. However, they have higher leakage current and are more temperature sensitive. Silicon diodes, on the other hand, have higher forward voltage drop but are more stable over a wider temperature range and have lower leakage current.
Silicon is preferred over germanium in the fabrication of p-n junction diodes because silicon has a higher bandgap energy, which allows for better temperature stability and leakage control. Silicon also has better electrical properties, such as higher breakdown voltage and lower intrinsic carrier concentration, making it more suitable for high-performance diode applications. Additionally, silicon is more abundant and cheaper to produce compared to germanium.
The temperature sensitivity of silicon is less than germanium because silicon has a wider energy band gap than germanium. This wider band gap allows silicon to operate more efficiently at higher temperatures, resulting in less temperature-dependent changes in its electrical properties compared to germanium. Additionally, silicon has a higher thermal conductivity than germanium, which helps dissipate heat more effectively, reducing temperature effects on its performance.
Neon has more protons than silicon. Neon has 10 protons, while silicon has 14 protons.
The six commonly recognized metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium.