A waxed car is not hydrophilic, it is not wetted with water. A drop of water falling on such a surface does not speak out wetting the surface. Instead the surface tension of the water drop pulls it into a spherical shape that sits on top of the surface until it either slides off or evaporates.
Short Answer:One expects mercury, like water, to bead more on a waxed surface and less on a painted or metallic surface.Explanation:The phenomena of beading of any liquid depends on the density of the liquid and the interfacial surface tension between the liquid and the surface with which it is in contact.Mercury has a large surface tension normally. The mercury-air interface has a surface tension of about 482 dynes/cm compared to water-air which is about 72 dynes/cm. Both of these are larger than most other liquids. The water-mercury interface has a surface tension of 415 dynes/cm.Both water and mercury decrease surface tension when in contact with a polar medium such as an alcohol.Wax is very non-polar while paint is presumably slightly polar. Of course, metal would be more polar. (Perhaps polarizable is a better term.) One expects mercury, like water, to bead more on a waxed surface and less on a painted or metallic surface.
A waxed car is not hydrophilic, it is not wetted with water. A drop of water falling on such a surface does not speak out wetting the surface. Instead the surface tension of the water drop pulls it into a spherical shape that sits on top of the surface until it either slides off or evaporates.
The form of water you are seeing is water vapor turning to mist and then collecting on leaves.
A possible word set could be: bead, dewdrop, raindrop.
Bang Bead was created in 2000.
Most waxes are petroleum based, just like gasoline. Therefore, they have similar properties and mix, whereas water has significantly different properties, causing it to 'bead up' and form droplets on the surface.
Water drops bead on a freshly waxed surface because the wax creates a hydrophobic barrier that repels water. This causes the water to form into beads instead of spreading out. The surface tension of the water also helps to maintain the spherical shape of the droplets on the waxed surface.
Water molecules are sticky due to hydrogen bonds
When you drop one drop of water on waxed paper, the water will bead up and form a circular shape due to the hydrophobic properties of the wax. This occurs because the wax repels the water, preventing it from spreading out or being absorbed into the paper.
Oil does not bead up on waxed surfaces primarily due to the differences in surface tension and adhesion. Wax creates a hydrophobic surface that repels water but can allow oil to spread out more evenly, as oil's surface tension is lower compared to water. Additionally, the chemical properties of wax and oil can result in poor adhesion between the two, preventing the formation of distinct beads. As a result, oil tends to form a thin film rather than distinct droplets on waxed surfaces.
Sometimes they do, but most of the times i saw were with bed spreads!!!!!!!! hope I helped
Short Answer:One expects mercury, like water, to bead more on a waxed surface and less on a painted or metallic surface.Explanation:The phenomena of beading of any liquid depends on the density of the liquid and the interfacial surface tension between the liquid and the surface with which it is in contact.Mercury has a large surface tension normally. The mercury-air interface has a surface tension of about 482 dynes/cm compared to water-air which is about 72 dynes/cm. Both of these are larger than most other liquids. The water-mercury interface has a surface tension of 415 dynes/cm.Both water and mercury decrease surface tension when in contact with a polar medium such as an alcohol.Wax is very non-polar while paint is presumably slightly polar. Of course, metal would be more polar. (Perhaps polarizable is a better term.) One expects mercury, like water, to bead more on a waxed surface and less on a painted or metallic surface.
A waxed car is not hydrophilic, it is not wetted with water. A drop of water falling on such a surface does not speak out wetting the surface. Instead the surface tension of the water drop pulls it into a spherical shape that sits on top of the surface until it either slides off or evaporates.
you pour gasoline on the bead and let it dry or call an exterminator because the bead is most likely not safe to sleep on.
Wax is hydrophobic, meaning it repels water. Of course, this repulsion is not strong enough to make the water hover a millimeter above the surface, but it is strong enough to force the water to act in this way, rather than sit there in a thin sheet. The "surface tension" of the water itself also plays a role.
it is called a drop
i guess your reffering to H2O just add water season 3 necklaces...the aqua colored bead on Bella's necklaces