If you know the frequency of a light wave, you can tell the wavelength, the
color it'll appear to your eye, and the energy in each photon of the light.
The energy of the wave ~APEX
It will become longer, and it will carry less energy, its also likely, that if the change or loss in frequency is enough, the radiation will become a different type of electromagnetic radiation in the spectrum like gamma to x-rays or visible light to infrared and so on.
An EM wave is caused by an energy source, such as something as big as a supernova or something as small as an electron changing in speed. I would say the change in the energy level of the energetic particle that causes the wave determines the frequency of the wave. +++ Whilst you may be right about the quantum physics, the frequency of the wave is that of the energy source, be it in a star or a radio transmitter, driving it.
The frequency of a sound wave does not affect the speed at which the wave moves. The speed of sound in a medium is determined by the properties of that medium, such as its density and elasticity. However, frequency does impact the pitch of the sound we hear.
v=fλ (velocity (m/s)=frequency (s^-1) * wavelength (m)When dealing with light v=hf is also useful (same derivation as for above), where h is the Planck constant.
Gamma ray
The frequency of an electromagnetic wave is determined by the speed of light divided by the wavelength of the wave. This relationship is defined by the equation: frequency = speed of light / wavelength.
Wave velocity is the speed at which a wave travels through a medium. It is determined by the frequency and wavelength of the wave, following the equation velocity = frequency x wavelength.
Frequency is the number of waves that pass a point per unit of time. Amplittude is the distanc from the crest or trough of the wave to an imaginary line. The amout of energy used determines the amplitude and frequency of a wave.
The frequency of a transverse wave is the number of complete oscillations it makes in a given time period. It is determined by the speed of the wave and the wavelength. The formula to calculate frequency is frequency speed of the wave / wavelength.
When a light wave travels from air into water, its frequency remains unchanged. This is due to the fact that the frequency of a wave is determined by the source that creates it, and does not change when it passes from one medium to another.
The frequency of a light wave corresponds to its color or wavelength. Higher frequency light waves have shorter wavelengths and are in the violet-blue end of the spectrum, while lower frequency waves have longer wavelengths and fall in the red-orange end of the spectrum. The frequency of light also affects its energy, with higher frequency light waves carrying more energy than lower frequency ones.
The wavelength of light is determined by the distance between two successive peaks or troughs in the light wave. It can be calculated using the formula λ = c / f, where λ is the wavelength, c is the speed of light in a vacuum, and f is the frequency of the light wave. Different colors of light have different wavelengths due to differences in frequency.
The frequency of a wave is independent of its amplitude, wavelength, and speed. Frequency refers to the number of complete oscillations a wave undergoes in a given time period and is determined by the source of the wave. It does not affect the other characteristics of the wave.
The speed of a wave can be determined by the equation: speed = frequency x wavelength. This equation relates the speed of a wave to its frequency and wavelength. Additionally, the wave equation, c = λf, where c is the speed of light, λ is the wavelength, and f is the frequency, can be used to determine the speed of electromagnetic waves in a vacuum.
Wave velocity is determined by the medium through which the wave is traveling and the properties of the wave itself, such as frequency and wavelength. It can be calculated as the product of wavelength and frequency or by dividing the distance the wave travels by the time it takes to travel that distance. Additionally, the type of wave, such as sound or light, can also affect the velocity at which it travels through a medium.
frequency
No, velocity and color are independent. Color is determined by frequency, and speed is determined by what material the light is traveling through.