answersLogoWhite

0

What else can I help you with?

Continue Learning about Natural Sciences

What is the place where controlled nuclear fission reactions take place?

The place where controlled nuclear fission reactions take place is called a nuclear reactor. In a nuclear reactor, uranium atoms are split in a controlled manner to produce heat energy, which is used to generate electricity.


What contains a heavy atom often used in nuclear fission reactions to produce thermal energy?

Uranium-235 is a heavy atom commonly used in nuclear fission reactions to produce thermal energy. When a uranium-235 atom absorbs a neutron, it becomes unstable and splits into two smaller atoms along with releasing energy and additional neutrons, which can trigger a chain reaction.


What are other information about nuclear fission?

Nuclear fission is a process in which the nucleus of an atom splits into two or more smaller nuclei, releasing a large amount of energy. This process is used in nuclear power plants to produce electricity. It also plays a significant role in nuclear weapons, where fission reactions release energy explosively.


Does nuclear fusion produce much less energy per atom than nuclear fission?

In terms of energy per atom, nuclear fusion produces more energy than nuclear fission. Fusion reactions involve the combination of lighter atomic nuclei to form heavier nuclei, releasing large amounts of energy in the process. Fission reactions, on the other hand, involve the splitting of heavier atomic nuclei into smaller fragments, releasing energy.


What products do you gain by nuclear fission?

The products of nuclear fission are typically two or more smaller nuclei, along with the release of energy in the form of gamma radiation and kinetic energy of the fission fragments. Fission of a heavy nucleus can also produce neutrons, which can go on to induce further fission reactions in a chain reaction.

Related Questions

Which contains a heavy atom often used in nuclear fission reactions to produce thermal eanergy?

Uranium-235 is a heavy atom commonly used in nuclear fission reactions to produce thermal energy.


Which contains a heavy atom used in nuclear fission reactions to produce thermal energy?

Uranium-235


What do all nuclear fission reactions produce?

All the nuclear fissions produce smaller elements from the larger element and few neutrons so that the fission reaction is continuously carried out.


What is the place where controlled nuclear fission reactions take place?

The place where controlled nuclear fission reactions take place is called a nuclear reactor. In a nuclear reactor, uranium atoms are split in a controlled manner to produce heat energy, which is used to generate electricity.


What contains a heavy atom often used in nuclear fission reactions to produce thermal energy?

Uranium-235 is a heavy atom commonly used in nuclear fission reactions to produce thermal energy. When a uranium-235 atom absorbs a neutron, it becomes unstable and splits into two smaller atoms along with releasing energy and additional neutrons, which can trigger a chain reaction.


What type of nuclear reaction is used in modern day nuclear reactors?

Modern day nuclear reactors primarily use fission reactions, where the nucleus of an atom is split into smaller fragments, releasing large amounts of energy. Fission reactions are controlled in reactors to generate heat, which is used to produce electricity.


What is the importance of nuclear reaction?

the importance of nuclear reactions are very important.for energy purpose these reactions are very important because many energetic outgoing particles produce fission and fusion.


Part of power plant where fission takes place?

The part of a power plant where fission takes place is called the nuclear reactor. This is where nuclear reactions, such as fission, occur to generate heat that is used to produce electricity. This heat is then used to heat water and produce steam that drives a turbine connected to a generator.


What are other information about nuclear fission?

Nuclear fission is a process in which the nucleus of an atom splits into two or more smaller nuclei, releasing a large amount of energy. This process is used in nuclear power plants to produce electricity. It also plays a significant role in nuclear weapons, where fission reactions release energy explosively.


Does nuclear fusion produce much less energy per atom than nuclear fission?

In terms of energy per atom, nuclear fusion produces more energy than nuclear fission. Fusion reactions involve the combination of lighter atomic nuclei to form heavier nuclei, releasing large amounts of energy in the process. Fission reactions, on the other hand, involve the splitting of heavier atomic nuclei into smaller fragments, releasing energy.


What products do you gain by nuclear fission?

The products of nuclear fission are typically two or more smaller nuclei, along with the release of energy in the form of gamma radiation and kinetic energy of the fission fragments. Fission of a heavy nucleus can also produce neutrons, which can go on to induce further fission reactions in a chain reaction.


What generates energy in nuclear power plants that boil water to produce steam?

In nuclear power plants, energy is generated by nuclear fission, which involves splitting atoms of uranium. The heat produced by the fission reactions is used to boil water and produce steam, which then drives turbines connected to generators to produce electricity.