4.2 V
4.2 V
4.2V
The voltage of a galvanic cell made with magnesium (Mg) and gold (Au) can be calculated using their standard reduction potentials. Magnesium has a standard reduction potential of about -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the reduction potential of magnesium from that of gold, resulting in a voltage of approximately +3.87 V. This indicates that the galvanic cell can produce a significant amount of electrical energy.
The stranded cell notation for a galvanic cell made with magnesium (Mg) and gold (Au) is written as: [ \text{Mg(s)} | \text{Mg}^{2+}(aq) || \text{Au}^{3+}(aq) | \text{Au(s)} ] In this notation, the anode (Mg) is on the left side, while the cathode (Au) is on the right, with a double vertical line (||) representing the salt bridge that separates the two half-cells.
The aluminum metals
4.2 V
4.2V
4.2 V
the gold electrode
the gold electrode
Mg(s) | Mg2+(aq) Au+(aq) | Au(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
The aluminum metals
The aluminum metals
The standard cell notation for a galvanic cell with aluminum and gold electrodes is represented as: Al(s) | Al³⁺(aq) || Au³⁺(aq) | Au(s). In this notation, the anode (aluminum) is listed on the left, and the cathode (gold) is on the right. The double vertical line (||) indicates the salt bridge or separation between the two half-cells. The state of each component (solid or aqueous) is also noted.
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
The two furthest apart in the galvanic series - for all practical purposes this is magnesium and Gold