I think at sealevel and standard conditions the partial pressure of hydrogen is nearly zero (~0 Pa).
Chat with our AI personalities
The partial pressure of hydrogen in air is approximately 0.000005 atm. This is a very small fraction of the total pressure of air, which is about 1 atm.
The partial pressure of hydrogen gas can be calculated by subtracting the partial pressure of helium from the total pressure. Therefore, the partial pressure of hydrogen gas would be 161 mm Hg (600 mm Hg - 439 mm Hg = 161 mm Hg).
To convert Torr to mm Hg, divide by 1.33. So, the partial pressure of helium in mm Hg is 439 Torr / 1.33 = 330 mm Hg. To find the partial pressure of hydrogen, subtract the partial pressure of helium from the total pressure: 600 mm Hg - 330 mm Hg = 270 mm Hg. Hence, the partial pressure of hydrogen gas is 270 mm Hg.
The partial pressure of a gas in a mixture is equal to the total pressure of the mixture multiplied by the mole fraction of that gas. Since the mole fraction of O2 in air is 0.2084 and the total pressure of air is approximately 1 atmosphere, the partial pressure of O2 in air is approximately 0.2084 atmosphere.
If the temperature is increased, the partial pressure of oxygen in a sample of air will also increase. This is because as the temperature rises, the oxygen molecules in the air will have greater kinetic energy and will exert more pressure.
The partial pressure of water (vapor) is included in the total pressure of the atmosphere (air) when boiling.