The molar mass of Li3PO4 is 116 g.
Chat with our AI personalities
The molar mass of K3PO4 (potassium phosphate) is calculated by adding the atomic masses of all the elements present in the compound. Molar mass of K3PO4 = (3 x molar mass of K) + (1 x molar mass of P) + (4 x molar mass of O) = (3 x 39.10 g/mol) + (1 x 30.97 g/mol) + (4 x 16.00 g/mol) = 212.27 g/mol.
The molar mass of glucose is 180,16 g.
The molar mass of PbSO4 (lead(II) sulfate) is approximately 303.3 g/mol. This can be calculated by adding the molar masses of each element in the compound: lead (Pb) has a molar mass of 207.2 g/mol, sulfur (S) has a molar mass of 32.1 g/mol, and oxygen (O) has a molar mass of 16.0 g/mol.
The molar mass of H2Te = 129.61588 g/mol
No, the molar mass does not differ in isoelectronic compounds. Isoelectronic compounds have the same number of electrons and therefore the same atomic mass, resulting in the same molar mass.
The molar mass is the sum of atomic weight of the atoms contained in a molecule. Example: water, H2O The molar mass is: 2 x 1,008 + 15,999 = 18,015 Molar mass is used in many calculus in chemistry.