The molar mass of K3PO4 (potassium phosphate) is calculated by adding the atomic masses of all the elements present in the compound. Molar mass of K3PO4 = (3 x molar mass of K) + (1 x molar mass of P) + (4 x molar mass of O) = (3 x 39.10 g/mol) + (1 x 30.97 g/mol) + (4 x 16.00 g/mol) = 212.27 g/mol.
The molar mass of glucose is 180,16 g.
The molar mass of PbSO4 (lead(II) sulfate) is approximately 303.3 g/mol. This can be calculated by adding the molar masses of each element in the compound: lead (Pb) has a molar mass of 207.2 g/mol, sulfur (S) has a molar mass of 32.1 g/mol, and oxygen (O) has a molar mass of 16.0 g/mol.
The molar mass of H2Te = 129.61588 g/mol
No, the molar mass does not differ in isoelectronic compounds. Isoelectronic compounds have the same number of electrons and therefore the same atomic mass, resulting in the same molar mass.
The molar mass of strontium phosphate, Sr3(PO4)2, can be calculated by adding the molar masses of strontium (Sr) and phosphate (PO4). The molar mass of strontium is 87.62 g/mol, and the molar mass of phosphate is 94.97 g/mol. Therefore, the molar mass of strontium phosphate is 87.623 + 30.972 = 310.64 g/mol.
Molar Mass of Carbon + Molar Mass of Silicon = Molar Mass of SiC. 12.0107 + 28.0855 = 40.0962 g / mol.
The molar mass of sulfur is approximately 32.06 grams per mole.
The molar mass of glucose is 180,16 g.
what is the molar mass for NaC1 !!!???!!!???!!!??? --- The molar mass of sodium chloride (NaCl) is 57,958 622 382.
to find molar mass you add the molar mass of the carbons 3(amu)+ molar mass of the hydrogens 8(amu) to find molar mass you add the molar mass of the carbons 3(amu)+ molar mass of the hydrogens 8(amu)
The molar mass of iron is 55.845g per mol. Molar mass is the mass of a given substance divided by its amount of substance.
The molar mass of Klonopin is 315,715 g.
The molar mass of lithium oxide (Li2O) is calculated by adding the molar masses of lithium (Li) and oxygen (O). Molar mass of Li = 6.94 g/mol Molar mass of O = 16.00 g/mol Molar mass of Li2O = 2*(molar mass of Li) + molar mass of O = 2*(6.94) + 16.00 = 14.88 + 16.00 = 30.88 g/mol
To find the percent of oxygen by mass in a compound, you need to know the molar mass of the compound and the molar mass of oxygen. Divide the molar mass of oxygen by the molar mass of the compound and multiply by 100 to get the percentage.
Molar mass represents the mass of 1 mole of molecules of a substance.
The molar mass of B10H14 is approximately 100.3 g/mol.
the Atomic Mass in g/ml is the molar mass of the element