Protons are pumped across the inner membrane into the intermembrane space.
Chat with our AI personalities
Protons (H+ ions) are pumped across the inner mitochondrial membrane during electron transport in the electron transport chain (ETC). This creates a proton gradient that is used to generate ATP via ATP synthase.
During cellular respiration, the Electron Transport Chain (ETC) is a series of protein complexes and molecules located in the inner mitochondrial membrane that transfer electrons from NADH and FADH2 to oxygen. This transfer of electrons drives the production of ATP through a process called oxidative phosphorylation. As electrons move through the ETC, protons are pumped across the inner mitochondrial membrane, creating an electrochemical gradient that is used to generate ATP.
ETS enzymes are located in the inner mitochondrial membrane of eukaryotic cells. They are part of the electron transport chain (ETC) that generates ATP through oxidative phosphorylation. The ETS enzymes transfer electrons from NADH and FADH2 to oxygen, producing a proton gradient across the inner mitochondrial membrane.
The electron transport chain (ETC) occurs in the inner mitochondrial membrane. It is comprised of a series of protein complexes embedded in the membrane, through which electrons are passed along to generate ATP.
As electrons are passed along the electron transport chain (ETC), they release energy. This energy is used to pump protons across the inner mitochondrial membrane, creating a proton gradient. The flow of protons back across the membrane drives ATP synthase to produce ATP.
In photosynthesis, ETC and chemiosmosis occur in the thylakoid membranes of chloroplasts. In cellular respiration, these processes take place in the inner mitochondrial membrane. These locations are where the electron transport chain (ETC) pumps protons across the membrane, creating a proton gradient that drives ATP production through chemiosmosis.