Genetic drift is the spread of specific random variations throughout the gene pool in the absence of specific selection pressures. There's always random variation in the population, but there aren't always changes in the environment for the population to adapt to. So natural selection, in stead of moving the population towards adaptation, might select from that random variation to move 'sideways', as it were, to a state that's equally well-adapted to the environment as what came before, but different. As random variation may produce many variants that are, more or less, equally well-adapted to their environment, the direction of evolution that results is more or less random.
The type of equilibrium where allele frequencies do not change is called Hardy-Weinberg equilibrium. This equilibrium occurs in an idealized population where certain assumptions are met, such as random mating, no mutation, no migration, no natural selection, and a large population size. In Hardy-Weinberg equilibrium, the genotype frequencies can be predicted using the allele frequencies.
The change of genetic information within an organism is known as a genetic mutation. It may also be refereed to as a change in allele frequencies when populations are examined.
the type of equilibrium that occurs when an allele frequencies do not change is dynamic equilibrium :)
Migration can lead to changes in allele frequencies by introducing new alleles into a population. When individuals move between populations, they bring their genetic material with them, potentially altering the genetic diversity of the receiving population. Gene flow through migration can increase genetic variation within a population or decrease differences between populations.
A population in which the allele frequencies do not change from one generation to the next is said to be in equilibrium.
Genetic equilibrium is a state in which the allele frequencies in a population remain constant and do not change over time. This means that the population is not evolving and there is no change in the genetic makeup of the population.
Evolution; the change in allele frequencies over time in a population of organisms.
allele
The type of equilibrium where allele frequencies do not change is called Hardy-Weinberg equilibrium. This equilibrium occurs in an idealized population where certain assumptions are met, such as random mating, no mutation, no migration, no natural selection, and a large population size. In Hardy-Weinberg equilibrium, the genotype frequencies can be predicted using the allele frequencies.
The change of genetic information within an organism is known as a genetic mutation. It may also be refereed to as a change in allele frequencies when populations are examined.
evolution within a species. the allele frequencies in a gene pool of a population
Random changes in allele frequency are due to genetic drift.
Generation-to-generation change in allele frequencies in a population is known as evolution. This change can be the result of various factors such as natural selection, genetic drift, gene flow, and mutation. Over time, these processes can lead to the emergence of new traits and variations within the population.
FOR PENNFOSTER....the answer is C) genetic drift
genetic drift
Genetic drift is the random change in allele frequencies in a population. It is caused by chance events and has more pronounced effects in small populations where genetic diversity is lower. Over time, genetic drift can lead to the loss of certain alleles or fixation of others in a population.
Allele frequencies remain constant in a population when certain conditions are met, such as no mutations, no gene flow, random mating, a large population size, and no natural selection. Genotype frequencies can change over time due to factors like genetic drift, natural selection, and non-random mating. As long as the conditions for constant allele frequencies are maintained, the overall genetic makeup of the population remains stable even as individual genotypes may change.