answersLogoWhite

0

The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1) where l is the azimuthal, angular momentum quantum number.

The magnetic quantum number ml depends on the orbital angular momentum (azimuthal) quantum number, l, which in turn depends on the principal quantum number, n.

The orbital angular momentum (azimuthal) quantum number, l, runs from 0 to (n-1) where n is the principal quantum number. l= 0 is an s orbital, l= 1 is a p subshell, l= 2 is a d subshell, l=3 is an f subshell.

The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1). ml "defines " the shape of the orbital and the number within the subshell.

As an example for a d orbital (l=2), the values are -2, -1, 0, +1, +2, , so 5 d orbitals in total.

User Avatar

Maude Kulas

Lvl 13
3y ago

What else can I help you with?

Continue Learning about Natural Sciences

How many values are there for the magnetic quantum number when the value of the angular momentum quantum number is 4?

The magnetic quantum number ( m_l ) can take on values ranging from (-l) to (+l), where ( l ) is the angular momentum quantum number. For ( l = 4 ), the possible values of ( m_l ) are (-4, -3, -2, -1, 0, +1, +2, +3, +4). This results in a total of 9 possible values for the magnetic quantum number when ( l = 4 ).


What are the possible values for the m1 quantum numbers for 8s electrons?

The possible values for the magnetic quantum number (m1) for 8s electrons range from -0 to 0, which means there is only one possible orientation in space. The m1 quantum number specifies the orientation of the electron's magnetic moment in an external magnetic field.


What is the third quantum number of 2p3?

The third quantum number is the magnetic quantum number, which describes the orientation of the orbital in space. For a 2p orbital, the possible values of the magnetic quantum number range from -1 to 1, representing the three different orientations of the p orbital in space. In the case of 2p3, the magnetic quantum number is 1.


Which quantum number is not a whole number?

The quantum number that is not a whole number is the magnetic quantum number, often denoted as ( m_l ). While the principal quantum number ( n ), angular momentum quantum number ( l ), and spin quantum number ( m_s ) are all whole numbers or integers, ( m_l ) can take on integer values ranging from (-l) to (+l), including zero, depending on the value of ( l ). However, the magnetic quantum number itself is always an integer, but its possible values reflect a range defined by the angular momentum quantum number.


How many possible values are there for the spin quantum number?

The spin quantum number can have two possible values: +1/2 or -1/2.

Related Questions

How many values are there for the magnetic quantum number when the value of the angular momentum quantum number is 4?

The magnetic quantum number ( m_l ) can take on values ranging from (-l) to (+l), where ( l ) is the angular momentum quantum number. For ( l = 4 ), the possible values of ( m_l ) are (-4, -3, -2, -1, 0, +1, +2, +3, +4). This results in a total of 9 possible values for the magnetic quantum number when ( l = 4 ).


What are the possible values for the m1 quantum numbers for 8s electrons?

The possible values for the magnetic quantum number (m1) for 8s electrons range from -0 to 0, which means there is only one possible orientation in space. The m1 quantum number specifies the orientation of the electron's magnetic moment in an external magnetic field.


What could the fourth quantum number of 3p3 electron be?

ms = -1/2


What is the third quantum number of 2p3?

The third quantum number is the magnetic quantum number, which describes the orientation of the orbital in space. For a 2p orbital, the possible values of the magnetic quantum number range from -1 to 1, representing the three different orientations of the p orbital in space. In the case of 2p3, the magnetic quantum number is 1.


The number of orbitals in a given subshell such as the 5d subshell is determined by the number of possible values of?

The number of orbitals in a given subshell, such as the 5d subshell, is determined by the number of possible values of the magnetic quantum number. Each orbital in a subshell is designated by a unique set of quantum numbers, including the magnetic quantum number that specifies the orientation of the orbital in space. In the case of the d subshell, there are five possible values for the magnetic quantum number (-2, -1, 0, 1, 2), so there are five orbitals in the 5d subshell.


What are the possible values of the magnetic quantum number m for f orbitals?

The magnetic quantum number ( m ) for f orbitals can take on integer values ranging from (-l) to (+l), where ( l ) is the azimuthal quantum number associated with f orbitals. For f orbitals, ( l = 3 ), so the possible values of ( m ) are (-3, -2, -1, 0, +1, +2, +3). This results in a total of seven possible values for ( m ).


What is the third quantum number of a 3s2 electron in phosphorus?

The third quantum number is the magnetic quantum number, also known as the quantum number that specifies the orientation of an orbital in space. For a 3s orbital, the possible values of the magnetic quantum number range from -l to +l, where l is the azimuthal quantum number, which is 0 for an s orbital. Therefore, the third quantum number for a 3s2 electron in phosphorus is 0.


Which quantum number is not a whole number?

The quantum number that is not a whole number is the magnetic quantum number, often denoted as ( m_l ). While the principal quantum number ( n ), angular momentum quantum number ( l ), and spin quantum number ( m_s ) are all whole numbers or integers, ( m_l ) can take on integer values ranging from (-l) to (+l), including zero, depending on the value of ( l ). However, the magnetic quantum number itself is always an integer, but its possible values reflect a range defined by the angular momentum quantum number.


What will be the value of magnetic quantum number if the value of azimuthal quantum number is given to you?

The magnetic quantum number can have integer values ranging from -ℓ to +ℓ, where ℓ is the azimuthal quantum number. So the value of the magnetic quantum number would depend on the specific value of the azimuthal quantum number provided to you.


Quantum numbers for Br?

The quantum numbers for Br (Bromine) are: Principal quantum number (n): Can have values 1 to infinity Azimuthal quantum number (l): Can have values 0 to (n-1) Magnetic quantum number (m): Can have values -l to +l Spin quantum number (s): Can have values +1/2 or -1/2


What is the third quantum number of 3s2 electron in phosphorus 1s2 2s2 2p6 3s2 3p3?

m(I)=0 (apex)


What could be a third quantum number of a 2p3 electron in phosphorus 1s22s22p63s23p3?

ml = -1