answersLogoWhite

0


Best Answer

The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1) where l is the azimuthal, angular momentum quantum number.

The magnetic quantum number ml depends on the orbital angular momentum (azimuthal) quantum number, l, which in turn depends on the principal quantum number, n.

The orbital angular momentum (azimuthal) quantum number, l, runs from 0 to (n-1) where n is the principal quantum number. l= 0 is an s orbital, l= 1 is a p subshell, l= 2 is a d subshell, l=3 is an f subshell.

The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1). ml "defines " the shape of the orbital and the number within the subshell.

As an example for a d orbital (l=2), the values are -2, -1, 0, +1, +2, , so 5 d orbitals in total.

User Avatar

Maude Kulas

Lvl 13
2y ago
This answer is:
User Avatar
More answers
User Avatar

anon

Lvl 10
3y ago

They act as codes that provide information about each electron in an atom.

n - energy level (can be 1,2,3…)

l - orbital shape (s=0, p=1, d=2)

ml - orbital orientation (goes from -/to +/by integers)

ms - spin (arrow up or down, and can be either +½ or -½)

This answer is:
User Avatar

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

User Avatar

Wiki User

12y ago

The names of the quantum numbers are:

Principal Quantum number (n)

Angular Momentum Quantum Number (l)

Magnetic Quantum Number (m)

Spin Quantum Number (+1/2 and -1/2)

The "n" gives the energy level of the electron then the "l" which is the sublevel then "m" which tells you which orbital it is in and last "s" which tells you if the electron is going to have a positive or negative 1/2 spin

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

There are 4 quantum numbers, n, l, ml, ms

They have long names respectively principal, azimuthal (angular momentum), magnetic and spin.

n can have values 0, 1, 2, 3, 4, 5......

l depends on n, and can have values, 0 to (n-1) (0 is an s orbital, 1 is a p subshell, 2 is a d subshell, 3 is a f subshell etc

ml can have -l to +l (sorry this font is rubbish the letter l looks like a 1) so for a d subshell, where l = 2, it can be -2, -1, 0, +1, +2. Five d orbitals in all.

ms can be -1/2 or +1/2 (These are the maximum of 2 electrons having opposite spin)

This answer is:
User Avatar

User Avatar

Wiki User

14y ago

n = 2, l = 0, ml = 0

n = 1, l = 0, ml = 0

n = 3, l = 1, ml = -1

n = 2, l = 1, ml = -1

or

n = 3, l = 2, ml = 1

n = 3, l = 2, ml = -2

B.n = 2, l = 0, ml = 0

C.n = 1, l = 0, ml = 0

D.n = 3, l = 1, ml = -1

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

1. Principle Quantum Number (n)- Distance from the nucleus

For example, when you do the ground state configuration: 1s2 2s2 2p6

The first number (1,2,2) represents the distance from the nucleus

2. Orbital Quantum Number (l)- Shape of the orbital

s-0 p-1 d-2 f-3

3. Magnetic Quantum Number (m)- Indicates a particular suborbital; orientation of the orbital in space

For example, the p shells have 3 orbitals. The first is -1, the second is

0, and the third is 1

4. Spin Quantum Number (s)- Spin of the electron; clockwise or counterclockwise (1/2 or -1/2)

If it is the first electron in the suborbital, it is +1/2 if it is the second,

it is -1/2

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

Theoretically, n can be any integer greater than 0

n= 1, 2, 3, 4,....

However, in the ground staes of the elements it is between 1 and 7.

"n" is the principal quantum number, which indicates the shell an electron occupies. A higher shell number means that an electron is further away from the nucleus, and therefore has greater energy. Because atoms can only get so large before breaking apart, the "n" number is limited to about 7 for the largest known atoms.

To determine what n is for a particular electron in an atom, you need to understand the electron configuration of atoms. You may be familiar with something like this:

1s22s22p63s23p64s23d104p6....

This is one way to show the electron configuration of an atom. The large numbers are the shell numbers, the letters indicate the sub-shell, and the superscript numbers show how many electrons are in that particular sub-shell of that particular shell. The shell number is equal to the principal quantum number (n).

For instance, the outermost electron in a Lithium atom (with three total electrons) would be in Shell #2, because the first two electrons filled up Shell #1. Therefore, the principal quantum number for the outermost electron in a Lithium atom is n=2.

If you've never learned or have forgotten electron configuration, you need to review it before trying to find n for a particular electron.

Hope this helps!

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

all the non-negative integers: 0,1,2,..., n-1, where n is a principal quantum number

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the possible values of the magnetic quantum number?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What are the possible values for the m1 quantum numbers for 8s electrons?

The possible values for the magnetic quantum number (m1) for 8s electrons range from -0 to 0, which means there is only one possible orientation in space. The m1 quantum number specifies the orientation of the electron's magnetic moment in an external magnetic field.


What is the third quantum number of 2p3?

The third quantum number is the magnetic quantum number, which describes the orientation of the orbital in space. For a 2p orbital, the possible values of the magnetic quantum number range from -1 to 1, representing the three different orientations of the p orbital in space. In the case of 2p3, the magnetic quantum number is 1.


How many possible values are there for the spin quantum number?

The spin quantum number can have two possible values: +1/2 or -1/2.


What are the possible values of the magnetic quantum number ml?

The magnetic quantum number ml depends on the orbital angular momentum (azimuthal) quantum number, l, which in turn depends on the principal quantum number, n. The orbital angular momentum (azimuthal) quantum number, l, runs from 0 to (n-1) where n is the principal quantum number. l= 0 is an s orbital, l= 1 is a p subshell, l= 2 is a d subshell, l=3 is an f subshell. The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1) so for an f orbital the values are -3. -2, -1, 0, +1, +2, +3, so 7 f orbitals in total. ml "defines " the shape of the orbital and the number within the subshell.


What are the possible values of the quantum numbers n l m s for the second shell?

Possible values of quantum numbers in order of n,l,m,s in the second shell:2,0,0,-1/22,0,0,+1/22,1,-1,-1/22,1,-1,+1/22,1,0,-1/22,1,0,+1/22,1,1,-1/22,1,1,+1/2

Related questions

What are the possible values for the m1 quantum numbers for 8s electrons?

The possible values for the magnetic quantum number (m1) for 8s electrons range from -0 to 0, which means there is only one possible orientation in space. The m1 quantum number specifies the orientation of the electron's magnetic moment in an external magnetic field.


What could the fourth quantum number of 3p3 electron be?

ms = -1/2


What is the third quantum number of 2p3?

The third quantum number is the magnetic quantum number, which describes the orientation of the orbital in space. For a 2p orbital, the possible values of the magnetic quantum number range from -1 to 1, representing the three different orientations of the p orbital in space. In the case of 2p3, the magnetic quantum number is 1.


The number of orbitals in a given subshell such as the 5d subshell is determined by the number of possible values of?

The number of orbitals in a given subshell, such as the 5d subshell, is determined by the number of possible values of the magnetic quantum number. Each orbital in a subshell is designated by a unique set of quantum numbers, including the magnetic quantum number that specifies the orientation of the orbital in space. In the case of the d subshell, there are five possible values for the magnetic quantum number (-2, -1, 0, 1, 2), so there are five orbitals in the 5d subshell.


What is the third quantum number of a 3s2 electron in phosphorus?

The third quantum number is the magnetic quantum number, also known as the quantum number that specifies the orientation of an orbital in space. For a 3s orbital, the possible values of the magnetic quantum number range from -l to +l, where l is the azimuthal quantum number, which is 0 for an s orbital. Therefore, the third quantum number for a 3s2 electron in phosphorus is 0.


What will be the value of magnetic quantum number if the value of azimuthal quantum number is given to you?

The magnetic quantum number can have integer values ranging from -ℓ to +ℓ, where ℓ is the azimuthal quantum number. So the value of the magnetic quantum number would depend on the specific value of the azimuthal quantum number provided to you.


Quantum numbers for Br?

The quantum numbers for Br (Bromine) are: Principal quantum number (n): Can have values 1 to infinity Azimuthal quantum number (l): Can have values 0 to (n-1) Magnetic quantum number (m): Can have values -l to +l Spin quantum number (s): Can have values +1/2 or -1/2


What is the third quantum number of 3s2 electron in phosphorus 1s2 2s2 2p6 3s2 3p3?

m(I)=0 (apex)


What could be a third quantum number of a 2p3 electron in phosphorus 1s22s22p63s23p3?

ml = -1


If the principle quantum number is 3 what possible values can azimuthal quantum number have?

For a principle quantum number 3, there are three possible sub-shells. These are 3s, 3p, 3d. Azimuthal quantum no. is less than principle quantum number. There for 3s it is 0, for 3p it is 1, for 3d it is 2.


How many possible values are there for the spin quantum number?

The spin quantum number can have two possible values: +1/2 or -1/2.


The numerical values of the magnetic quantum number m1 depends on the?

The values of the magnetic quantum number depend on the value of the azimuthal quantum number (orbital angular momentum quantum number) and has values -l, .. 0 . ..+l l=1, p orbital, -1, 0, +1 - three p orbitals l=2 d orbital -2, -1, 0., +1,+2 five d orbitals etc.