answersLogoWhite

0

protein is made up of small _small moleculs of amino acid,this process is anabolism,which is a chemical reaction inside the metabolism,present in cell.

it carry four structures- which r answering by all.

thanku.

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
JudyJudy
Simplicity is my specialty.
Chat with Judy
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
More answers

The structure levels of a protein are primary (sequence of amino acids), secondary (alpha helices and beta sheets), tertiary (overall 3D shape of the protein), and quaternary (interactions between multiple protein subunits). Each level of structure is critical for the protein to perform its specific function.

User Avatar

AnswerBot

9mo ago
User Avatar

The Primary Structure is affected when Hydrolysis splits the amide linkages.

User Avatar

Wiki User

12y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What are structure levels of a protein?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

Which two levels of protein structure principally determine the active site of an enzyme?

The primary and secondary levels of protein structure determine the active site of an enzyme. The specific arrangement of amino acids in the active site, influenced by both the primary sequence and secondary structures such as alpha helices and beta sheets, is critical for enzyme-substrate interactions.


What are the four stages of protein structures?

The four levels of protein structure are differentiated from each other by the complexity of their polypeptide chain. Proteins are constructed from 20 amino acids. The levels are the hydrogen atom, a Carboxyl group, an amino group and a variable or "R" group. They have a primary structure, the order in which the amino acids are linked to form a protein. Secondary structure , coiling and folding of the polypeptide chain. Tertiary structure, is a 3-D structure of a protein chain. Quaternary is the structure of a protein macro molecule formed by interactions between several polypeptide chains..


What determines each of the different structural levels of a protein and how the structural levels are different from each other?

The primary structure of a protein is determined by the sequence of amino acids in the polypeptide chain. Secondary structure is influenced by hydrogen bonding patterns within the chain, leading to alpha helices and beta sheets. Tertiary structure results from interactions between distant amino acids, folding the protein into a specific 3D shape. Quaternary structure involves the arrangement of multiple protein subunits. Each level builds on the previous one, with increasing complexity and organization.


What are the different levels of protein structure and explain why tertiary structure must be maintained for protein function?

The different levels of protein structure are primary (sequence of amino acids), secondary (local folding patterns like alpha helices or beta sheets), tertiary (overall 3D shape of protein), and quaternary (arrangement of multiple protein subunits). Tertiary structure must be maintained for protein function because it determines the precise folding arrangement that allows the protein to perform its specific biological function. Disruption of tertiary structure can lead to loss of protein function, as the active site and binding sites may no longer be properly configured for their respective interactions.


What are four levels of protein structer and the basis of each?

Primary structure: This is the linear sequence of amino acids in a protein, determined by the genetic code. Secondary structure: This refers to the local folded structures within a protein, such as alpha helices and beta sheets, stabilized by hydrogen bonding between amino acids. Tertiary structure: This is the three-dimensional arrangement of the entire protein molecule, driven by interactions between side chains of amino acids, including disulfide bonds, hydrogen bonds, and hydrophobic interactions. Quaternary structure: This level of protein structure refers to the arrangement of multiple protein subunits (if present) and their interactions to form a functional protein complex.