answersLogoWhite

0

v Hyoscine

v Epinephrine

v Codeine

v Benzyl penicillin

v Morphine

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

Are enantiomers are optically active?

Alanine is optically active because it has a chiral center, which is essential for a molecule to be optically active.


How can you identify is the substance is optically active?

A substance is optically active if it has the ability to rotate plane-polarized light. This can be detected using a polarimeter, which measures the extent and direction of rotation caused by the substance. Optically active substances have chiral centers that do not have a plane of symmetry, making them capable of rotating the plane of polarized light.


Which noncyclic isomers of bromochloropropene are optically active?

Both (Z)-bromochloropropene and (E)-bromochloropropene are noncyclic isomers that are optically active. These isomers have a chiral carbon atom due to the presence of different substituents attached to it.


How do you distiguish for the optically active and in active?

First of all we should know what optically active molecules are "Those molecules which possess asymmetric(chiral) carbon atoms have the ability to rotate the plane polarized light(light of one wavelength having its electrical character vibrating in one direction only) to the left or to the right are known as Optically active molecules" while those molecules not following the former scenario are known as Optically Inactive molecules. All in all molecules having asymmetric carbon atoms are known as optically active molecules for example glucose(rotate plane polarized light to the left) & fructose(rotate plane polarized light to the right) are optically active molecules. While molecules lacking asymmetric carbon atoms are optically inactive molecules for example water is optically inactive. And that's how we can distinguish between these two molecular classifications.


How many isomers can be obtained from C6H14?

None, as it has 5 structural isomers in which none of are optically active.

Related Questions

Is allene optically active or not?

Yes, allene is optically active due to its chirality. It has two chiral centers, resulting in four stereoisomers, two of which are enantiomers that are optically active.


Is water optically active?

Water is not optically active. It does not rotate the plane of polarized light, which is a characteristic typically associated with optically active substances.


Is phenylmethanol optically active?

No, phenylmethanol is not optically active because it lacks a chiral center. It does not have a stereocenter that would give rise to enantiomers.


What is asymmetrical symmetry?

The synthesis of an optically active compound from an optically inactive compound with or without using an optically active reagent.


Are diastereomers optically active?

Diastereomers have different physical and chemical properties, and therefore can have different optical activities. Some diastereomers may be optically active, while others may not be. It depends on their specific molecular structures and whether they contain chiral centers.


Are enantiomers optically active?

Yes, enantiomers are optically active because they have a chiral center that causes them to rotate plane-polarized light in opposite directions.


Which of the following substances are optically active?

Optically active substances are those that can rotate the plane of polarized light. Chiral molecules, which have a non-superimposable mirror image, are optically active. Examples include sugars like glucose and amino acids like alanine.


Are enantiomers are optically active?

Alanine is optically active because it has a chiral center, which is essential for a molecule to be optically active.


Which of the following compounds are optically active?

Optically active compounds are those that can rotate plane-polarized light. Compounds with chiral centers, such as those with four different substituents, are optically active. Examples include chiral amino acids like L-alanine and D-glucose.


What is the difference between optical isomer and optically active isomer?

Optical isomers are those which have one or more asymmetric carbon atoms their optical activity means a tendency to rotate the plane of plane polarized light but some of such molecules have an internal symmetry as meso form of Tartaric acid , this is the optical isomer of Tartaric acid but is optically inactive.


How can you identify is the substance is optically active?

A substance is optically active if it has the ability to rotate plane-polarized light. This can be detected using a polarimeter, which measures the extent and direction of rotation caused by the substance. Optically active substances have chiral centers that do not have a plane of symmetry, making them capable of rotating the plane of polarized light.


Why 1-chlorobutane is optically not active or 2-chlorobutane is optically active?

The 2-Carbon in 2-chlorobutane has 4 different substituent groups attached to it (Cl, CH3, H, CH2CH3) and hence is a chiral Carbon. There are no Carbon atoms in 1-chlorobutane which have 4 different substituent groups attached and hence is not optically active.