Convergent plate boundary.
Chat with our AI personalities
Rocks that move in opposite horizontal directions are called strike-slip faults. In these faults, two blocks of rocks slide past each other horizontally along a fault plane in opposite directions. This movement is caused by shear stress in the Earth's crust.
Strike slip fault
When rocks on opposite sides of a fault move in opposite directions, it is called a strike-slip fault. When they move in the same direction, it is called a normal or reverse fault, depending on the type of stress causing the movement. The rate of movement can vary from slow creep to sudden jolts during an earthquake.
Rocks can move in different directions due to various factors such as wind, water flow, gravity, and geological processes like tectonic activity or landslides. These external forces can shift rocks in ways that lead to their movement in multiple directions.
When rocks on opposite sides of a fault move in the same direction at different rates, it results in a strike-slip fault. This type of fault occurs when there is horizontal motion along the fault line. The two main types of strike-slip faults are left-lateral and right-lateral, depending on the direction of movement when facing the fault.
This process of rocks moving in opposite directions on opposite sides of a fault is known as strike-slip faulting. The movement can be either left-lateral (sinistral) or right-lateral (dextral), depending on the relative lateral displacement of the blocks. If the rocks move in the same direction but at different rates, it may indicate differential movement caused by friction variations along the fault plane.