molecules without permanent dipole are called Raman active molecules
Chat with our AI personalities
Raman active molecules are those that exhibit a change in polarizability during the Raman spectroscopy process. This change results in the scattering of light at different wavelengths, providing information about the molecular structure and vibrations of the molecule. Raman spectroscopy is a powerful technique used for chemical analysis and identification.
Yes, there are different types of Raman spectroscopy, including spontaneous Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and resonance Raman spectroscopy. Each type utilizes different methods to enhance the Raman scattering signal and provide insights into different sample properties.
active sites
A molecule is considered microwave active if it has a net dipole moment resulting from the uneven distribution of charges within the molecule. This uneven distribution causes the molecule to rotate and absorb microwave radiation. In contrast, molecules that are symmetric and have a zero net dipole moment are considered microwave inactive because they do not interact with microwave radiation.
Yes, dipole moment is present in Raman spectroscopy. Raman spectroscopy depends on the interaction of light with the vibrational modes of molecules, which can induce changes in dipole moments leading to scattering of light.
It is known as the active site.