Spikes of electrical activity recorded during an EMG that reflect the number of motor units activated when the patient voluntarily contracts a muscle
Chat with our AI personalities
Motor unit action potentials are electrical signals generated by a motor unit in response to a neural impulse from the central nervous system. These signals travel along the motor neurons to stimulate muscle fibers to contract. The pattern and strength of motor unit action potentials determine the force and coordination of muscle contractions.
The response of a motor unit to a single action potential of its motor neuron is called a muscle twitch. This involves the contraction of all the muscle fibers within the motor unit in response to the stimulation from the motor neuron.
Depolarization at the motor end plate upon arrival of action potentials triggers the release of neurotransmitter acetylcholine into the synaptic cleft. This acetylcholine then binds to receptors on the muscle cell membrane, initiating muscle contraction by depolarizing the muscle cell membrane and allowing the action potential to propagate along the muscle fiber.
No, neuroglia cells cannot transmit action potentials. They provide support and insulation to neurons, helping in their functions. Action potentials are transmitted through the neurons themselves.
Action potentials relay intensities of information through a process called frequency coding. The higher the frequency of action potentials, the stronger the stimulus intensity. This allows for a wide range of intensities to be communicated by varying the firing rate of action potentials.
A neuron (nerve cell) receives dendritic input in order to generate action potentials to transmit signals of the same. After the action potential triggers release of neurotransmitters in the axonal terminal of that neuron, those neurotransmitters propagate the signal forward to the next neuron, and so forth.