Ligase joins okazaki fragments to each other to form a continuous strand of DNA
Chat with our AI personalities
DNA ligase is the enzyme responsible for joining together the Okazaki fragments on the lagging strand to create a continuous strand of DNA during DNA replication.
The lagging strand of DNA is replicated in Okazaki fragments. These short, discontinuous fragments are synthesized as the DNA replication process moves away from the replication fork. They are eventually joined together by DNA ligase to form a continuous strand.
The enzyme responsible for joining the Okazaki fragments on the lagging strand during DNA replication is DNA ligase. DNA ligase helps to seal the nicks between the newly synthesized Okazaki fragments, creating a continuous strand of DNA.
DNA ligase joins the Okazaki fragments together on the lagging strand during DNA replication. It catalyzes the formation of phosphodiester bonds between the fragments to create a continuous strand.
Reiji and Tsuneko Okazaki, along with colleagues, discovered short DNA fragments called Okazaki fragments that are synthesized discontinuously during DNA replication on the lagging strand. Their work helped to elucidate the process of DNA replication and how it occurs on both the leading and lagging strands, leading to the development of the Okazaki fragment model for DNA replication.
During DNA replication Okazaki fragments are joined together by DNA polymerase. Remember that Okazaki fragments start with an RNA primer so RNAse H is need to remove the primer follwed by DNA plymerase to add nucleotides and finally DNA ligase to seal the single strand nick.