I believe it's NADH and FADH
Chat with our AI personalities
NADH and FADH2 are two coenzymes that carry most of the energy produced during the Krebs cycle. These coenzymes will then go on to the electron transport chain to donate their electrons and contribute to ATP production.
The reactants of the Krebs cycle are acetyl CoA, oxaloacetate, and water. This series of reactions occurs in the mitochondria and involves the oxidation of acetyl CoA to produce ATP and reduced coenzymes.
The efficiency of the Krebs cycle in terms of converting glucose into ATP is around 60%. This means that for every molecule of glucose that enters the cycle, about 60% of the energy is captured in the form of ATP. The rest of the energy is lost as heat.
False. In cellular respiration, glycolysis occurs before the Krebs cycle. Glycolysis is the first step in breaking down glucose to produce energy. The Krebs cycle follows glycolysis in the process of cellular respiration.
OAA (oxaloacetate) is important in the Krebs' cycle because it combines with acetyl-CoA to form citrate, which is the starting compound in the cycle. Without OAA, the Krebs' cycle cannot proceed because there would be no citrate to kickstart the series of reactions that generate energy in the form of ATP.
Hans Krebs discovered the Krebs cycle, also known as the citric acid cycle, in 1937.