answersLogoWhite

0


Best Answer

Warm air rises at the equator and cold air sinks at the poles. Warm air expands and cool air contracts and compresses.

User Avatar

Wiki User

9y ago
This answer is:
User Avatar
More answers
User Avatar

Anonymous

Lvl 1
3y ago

Warm air rises at the equator and cold air sinks at the poles creating

This answer is:
User Avatar

User Avatar

Anonymous

Lvl 1
3y ago

colorize effect

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Warm air rises at the equator and cold air sinks at the poles creating?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

How heat transfer between the equator and poles?

Heat is transferred from the equator to the poles through a mechanism called atmospheric circulation. Warm air rises at the equator, moves towards the poles, cools, and then sinks at the poles. This circulation, combined with ocean currents, helps distribute heat around the globe.


How does air move around the world?

Air moves around the world due to differences in temperature and pressure. Warm air rises at the equator and cooler air sinks at the poles, creating global wind patterns. The rotation of the Earth also causes air to move in curved paths, creating the major wind belts known as the trade winds, westerlies, and polar easterlies.


Why do prevailing winds occur?

Prevailing winds occur due to the rotation of the Earth and differences in temperature and pressure across the globe. As warm air rises at the equator and cooler air sinks at the poles, air masses are set in motion creating global wind patterns. The Coriolis effect also plays a role in shaping the direction of prevailing winds.


Air is warmer and less dense than surrounding air at the equator because the equator receives more?

solar radiation throughout the year. As a result, air at the equator is heated, causing it to rise and creating low pressure. This warm air then moves towards the poles, where it cools, becomes denser, and sinks back towards the surface.


When warm air rises and cool air sinks what current is created?

When warm air rises and cool air sinks, a convection current is created. This is due to the difference in air density caused by temperature variations. Warm air is less dense and rises, while cool air is denser and sinks, creating a circular flow of air.

Related questions

How does air travel at the poles?

The cold dense air at the poles sinks, so the air from the upper level of atmosphere flows in on the top of the increasing weight while creating an area of high pressure at the poles. Now, the air that rises at the equator does not flow directly to the poles.


Where could you find a convection?

You can find convection occurring in the Earth's atmosphere, where warm air rises and cool air sinks, creating wind patterns and weather systems. Convection also happens in the oceans, where warm water rises at the equator and cold water sinks at the poles, driving ocean currents.


What creates the air pressure difference between the equator and the poles?

The air pressure difference between the equator and the poles is primarily caused by the temperature difference. Warm air at the equator rises, creating a low-pressure area, while cold air at the poles sinks, creating a high-pressure area. This temperature difference drives atmospheric circulation, resulting in the pressure gradient between the two regions.


What causes difference in air pressure around earth?

Twinkies


How heat transfer between the equator and poles?

Heat is transferred from the equator to the poles through a mechanism called atmospheric circulation. Warm air rises at the equator, moves towards the poles, cools, and then sinks at the poles. This circulation, combined with ocean currents, helps distribute heat around the globe.


How is a convection cell formed?

Convection cells are formed due to the uneven heating of Earth's surface by the sun. As air near the equator is heated, it expands and rises, creating a low pressure area. This rising air cools, sinks, and moves towards the poles, completing the convection loop.


Atmospheric circulation patterns keep the temperature of an area constant?

Atmospheric circulation patterns help regulate temperature by redistributing heat around the Earth. For example, warm air rises at the equator and moves towards the poles, while cool air sinks at the poles and moves towards the equator, creating a balanced temperature distribution. This global circulation system helps to maintain relatively stable temperatures in different regions.


Is air rising or sinking at the equator?

it sinks. since the equator is in direct contact with the sun, the poles are not. the are hit by the sun at a lower angle, and since the suns energy is spread out over a larger area, so it heats the surface less. as a result, temperatures near at the poles are much lower, and cold air sinks. at the equator, the temperatures are much higher, and the warm air is steadily rising. cold air comes, but it is quickly warmed and it rises. basically, warm air rises, cold air sinks. the equators warm, the poles are cold.


What is an example of covection?

An example of convection is when warm air rises and cold air sinks, creating a cycle of air movement. This can be seen in convection currents in a pot of boiling water or in the Earth's atmosphere, where warm air rises near the equator and moves towards the poles.


What do convection currents resulting from uneven heating of Earth's surface form?

Convection currents resulting from uneven heating of Earth's surface form winds. Warm air rises at the equator, moves towards the poles at high altitude, cools, and sinks back towards the surface, creating global wind patterns.


How does air move around the world?

Air moves around the world due to differences in temperature and pressure. Warm air rises at the equator and cooler air sinks at the poles, creating global wind patterns. The rotation of the Earth also causes air to move in curved paths, creating the major wind belts known as the trade winds, westerlies, and polar easterlies.


Why do pressure belts form in the atmosphere?

Pressure belts form in the atmosphere due to differences in solar heating at different latitudes. Warm air rises at the equator, creating a low-pressure area, while cooler air sinks at the poles, creating high-pressure areas. This creates a system of alternating high and low pressure belts that help drive global wind patterns.