AGTCG (I'm assuming your strand was written in the normal 5' to 3' order, and I wrote mine in that order as well, which means the last residue in my strand pairs with the first residue in your strand, and vice versa).
If cga ct were used as a template strand for complementary DNA synthesis, the complementary DNA produced would be gct ga. This is because each nucleotide pairs with its complementary base: cytosine (c) pairs with guanine (g), guanine (g) pairs with cytosine (c), adenine (a) pairs with thymine (t), and thymine (t) pairs with adenine (a). Therefore, the complementary sequence would read from 5' to 3' as gct ga.
The complementary strand of DNA is a strand that matches the sequence of the original DNA strand through base pairing rules. Adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G). This results in two DNA strands with complementary sequences that can be used for replication and transcription.
The process of DNA replication.
It joins up with its complementary strand. I may then be used to make RNA.
During DNA replication, the base that attaches to a specific location on the template strand depends on the base present at that location. If the base at location 2 on the template strand is adenine (A), then thymine (T) will attach to the complementary strand. Conversely, if the base at location 2 is cytosine (C), then guanine (G) will be added. The pairing follows the rules of complementary base pairing: A-T and C-G.
CAT GT. -APEX Learning
The template strand of DNA is used to make a complementary copy during DNA replication, while the antisense (non-coding) strand is used as a template for complementary mRNA synthesis during transcription.
The template strand is used to make a complementary copy. This is a type of DNA strand.
During transcription, the DNA template is used to create a complementary strand of mRNA (messenger RNA). An A on the DNA template is complementary to a U on the mRNA, T to A and C to G. Therefore the complementary mRNA of TAC-GCG-CAT-TGT-CGT-CTA-GGT-TTC-GAT-ATA-TTA-GCT-ACG is: UTG-CGC-GUA-ACA-GCA-GAU-CCA-AAG-CUA-UAU-AAU-CGA-UGC
If cga ct were used as a template strand for complementary DNA synthesis, the complementary DNA produced would be gct ga. This is because each nucleotide pairs with its complementary base: cytosine (c) pairs with guanine (g), guanine (g) pairs with cytosine (c), adenine (a) pairs with thymine (t), and thymine (t) pairs with adenine (a). Therefore, the complementary sequence would read from 5' to 3' as gct ga.
The complementary strand of DNA is a strand that matches the sequence of the original DNA strand through base pairing rules. Adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G). This results in two DNA strands with complementary sequences that can be used for replication and transcription.
AGTCG (I'm assuming your strand was written in the normal 5' to 3' order, and I wrote mine in that order as well, which means the last residue in my strand pairs with the first residue in your strand, and vice versa).
The process of DNA replication.
During DNA replication, the template strand is used as a guide to create a complementary copy, while the coding strand is not directly involved in the copying process. The template strand determines the sequence of nucleotides in the new DNA strand, while the coding strand has the same sequence as the RNA transcript that will be produced from the new DNA strand.
During transcription, only one DNA strand is used as a template to synthesize an mRNA molecule. This strand is called the template or antisense strand. The other DNA strand, known as the coding or sense strand, is not used because it has the same sequence as the mRNA molecule being produced, except with thymine instead of uracil. Transcribing both strands would be redundant and energetically wasteful.
It joins up with its complementary strand. I may then be used to make RNA.
GCT GA :)