The formula you are looking for is I = W/E, Amps = Watts/Volts. Amps = 5000/230 =21.7 amps. The wire size to run this heater would be a #10 copper conductor. The supply breaker would be a two pole 30 amp breaker.
Chat with our AI personalities
The heater does not have a kilowatt OUTPUT. It uses electricity, but does not make it. The wattage is amps time volts- in this case, 12,000 watts. To get kilowatts, divide by 1,000. That heater has an input of 12 kilowatts.
To calculate the current, we would use the formula: Current (I) = Power (P) / Voltage (V). For a 5-kW heater with 230 volts, the current would be 21.74 amps.
To calculate the amperage draw, you can use the formula P = V x I, where P is the power in watts, V is the voltage in volts, and I is the current in amps. Given that the power is 1200 watts and voltage is 120 volts, you can rearrange the formula to solve for current. Therefore, I = P / V, so the amperage draw of the heater would be 10 amps.
To calculate the amperage, use the formula: Amps = Watts / Volts. In this case, it would be 2400 watts / 240 volts = 10 amps. Therefore, the water heater would draw 10 amps of current.
To calculate the amperage, you can use the formula: Amps = Watts / Volts. In this case, a 400-watt heater cartridge at 240 volts would draw 1.67 amps.
To calculate the current draw, use the formula: Current (A) = Power (W) / (Voltage (V) * √3). Plugging in the values, we get Current = 30000W / (208V * √3) ≈ 78.7A. So, a 30KW strip heater operating at 208 volts 3-phase would draw approximately 78.7 amps.
No, a 1000-watt electric heater operating at 110V will produce the same amount of heat as a 1000-watt heater operating at 220V. The power output (in watts) determines the amount of heat produced, not the voltage.