The formula you are looking for is I = W/E, Amps = Watts/Volts. Amps = 5000/230 =21.7 amps. The wire size to run this heater would be a #10 copper conductor. The supply breaker would be a two pole 30 amp breaker.
To calculate the amperage draw, you can use the formula P = V x I, where P is the power in watts, V is the voltage in volts, and I is the current in amps. Given that the power is 1200 watts and voltage is 120 volts, you can rearrange the formula to solve for current. Therefore, I = P / V, so the amperage draw of the heater would be 10 amps.
Watts = Amps x Volts for a resistive load like a water heater.
To calculate the amp draw for a 3800-watt water heater at 240 volts, use the formula: Amps = Watts / Volts. Thus, the amp draw would be 3800 watts / 240 volts, which equals approximately 15.83 amps. Therefore, the water heater draws about 16 amps.
The formula you are looking for is I = W/E.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
To calculate the amperage draw, you can use the formula P = V x I, where P is the power in watts, V is the voltage in volts, and I is the current in amps. Given that the power is 1200 watts and voltage is 120 volts, you can rearrange the formula to solve for current. Therefore, I = P / V, so the amperage draw of the heater would be 10 amps.
Watts = Amps x Volts for a resistive load like a water heater.
To calculate the amp draw for a 3800-watt water heater at 240 volts, use the formula: Amps = Watts / Volts. Thus, the amp draw would be 3800 watts / 240 volts, which equals approximately 15.83 amps. Therefore, the water heater draws about 16 amps.
The formula you are looking for is I = W/E.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
Current (amps)=Watts/Volts =2000/120 =16.75 =16.75 amps
No, a 1000-watt electric heater operating at 110V will produce the same amount of heat as a 1000-watt heater operating at 220V. The power output (in watts) determines the amount of heat produced, not the voltage.
For a 5kW heater HVAC system, you would typically need to use 10-gauge wire to handle the current load safely. It's important to always consult the manufacturer's specifications or a licensed electrician to ensure you are using the correct wire gauge for your specific setup.
To find the current in amps that a 750 watt, 120 volt heater draws, you can use the formula: Amps = Watts / Volts. So, 750 watts divided by 120 volts equals 6.25 amps. Therefore, the heater draws approximately 6.25 amps.
To answer this question the wattage of the block heater must be stated. Amps = Watts/Volts.
To calculate the current (in amps) drawn by a 3-phase heater, you can use the formula: [ \text{Current (I)} = \frac{\text{Power (P)}}{\sqrt{3} \times \text{Voltage (V)}} ] For a 10.6 kW heater at 208 volts, the calculation would be: [ I = \frac{10,600 , \text{W}}{\sqrt{3} \times 208 , \text{V}} \approx 27.8 , \text{amps} ] Thus, the heater will draw approximately 27.8 amps.
Using the formula Power = Voltage x Current, we can calculate the current: Current = Power / Voltage. Plugging in the values, we get 1500W / 120V = 12.5A. So, a 1500W resistance heater would draw 12.5A of current at 120V.