Watts = amps x volts.
the simplest solution is by connecting two 120v 3amps heater in series , the same can be used directly on 240v. However the current drawn will still be 3 amps & Not 1.5 amps. The heater output power will be double that of a single heater running on 120v. ( or equvalent to two heaters operating on 120v. supply ) A more expensive method is to use a stepdown transformer which can be powered on 240v & connect the heater on the transformer 120v side. this method will consume approx. 1.5 amps from the 240v supply.
The amperage of an electric heater depends on its power rating in watts and the voltage it operates on. To determine the amperage, divide the wattage by the voltage (Amperes = Watts / Volts). For example, a 1500 watt electric heater running on 120 volts would use 12.5 amperes (1500 watts / 120 volts = 12.5 A).
There are small water heaters that run on 110 volts. However if yours is a large 240 volt heater and you only have 110 volts going to it, then it is fused and one on the fuses has blown in the service panel.
No, a 1000-watt electric heater operating at 110V will produce the same amount of heat as a 1000-watt heater operating at 220V. The power output (in watts) determines the amount of heat produced, not the voltage.
A 1500-watt heater draws approximately 12.5 amps, which is close to the 15-amp capacity of the breaker. If there are other appliances drawing power on the same circuit, it could easily trip the breaker. You may need to run the heater on a circuit with fewer devices drawing power to prevent overloading the breaker.
Yes, a 1500 watt heater operating on 120 volts has an amperage of A = W/V. Amps = Watts/Volts = 1500/120 = 12.5 amps. It is not a recommended practice to do so.
Appliances operating at 240 volts consume less electrical power compared to those operating at 120 volts because higher voltage allows for lower current to achieve the same power output.
Power = (current) x (voltage)2,000 = 8 VV = 2,000/8 = 250 volts if the power factor is ' 1 ' and everything is operating as marked
The main difference between electrical appliances operating at 120 volts and 240 volts is the amount of power they can handle. Appliances operating at 240 volts can handle more power and are often more efficient, but they require a different type of outlet and wiring compared to appliances operating at 120 volts.
Voltage is current times resistance, 1.2 x 110 = 132 volts.
No. A water heater requires a 240 volt connection and cannot be re-wired to run on 120 volts. There isn't enough amperage in 120 volts to power the heating rods that are inside.
VOLTS x (VOLTS/OHMS) = WATTS 240 X (240/8) = 7200 Watts = 7.2KWatts
the simplest solution is by connecting two 120v 3amps heater in series , the same can be used directly on 240v. However the current drawn will still be 3 amps & Not 1.5 amps. The heater output power will be double that of a single heater running on 120v. ( or equvalent to two heaters operating on 120v. supply ) A more expensive method is to use a stepdown transformer which can be powered on 240v & connect the heater on the transformer 120v side. this method will consume approx. 1.5 amps from the 240v supply.
Watts = Current x Volts with your resistive heat application. To figure out resistance you need to know voltage and current. Since you are drawing 6 amps then Volts = 325/6. This means that there is about 54 volts supplying the heater which seems like a very strange supply voltage. Since Volts = Current x Resistance the resistance = 325/36.
The amperage of an electric heater depends on its power rating in watts and the voltage it operates on. To determine the amperage, divide the wattage by the voltage (Amperes = Watts / Volts). For example, a 1500 watt electric heater running on 120 volts would use 12.5 amperes (1500 watts / 120 volts = 12.5 A).
There are small water heaters that run on 110 volts. However if yours is a large 240 volt heater and you only have 110 volts going to it, then it is fused and one on the fuses has blown in the service panel.
No, a 1000-watt electric heater operating at 110V will produce the same amount of heat as a 1000-watt heater operating at 220V. The power output (in watts) determines the amount of heat produced, not the voltage.