100/150.158 is 0.666 moles
510 g Al2S3 is equal to 3,396 moles.
14,84 g magnesium are equivalent to 0,61 moles.
97,5 g of oxygen is equal to 5,416 moles.
978 g calcium contain 24,4 moles.
67,4 g HCl is equivalent to 1,85 moles.
510 g Al2S3 is equal to 3,396 moles.
The answer i got is 12.33 grams of Al2S3. Below i will try to show the steps i used: n=moles m=mass (grams) M= molecular weight (from periodic table) 2Al + 3S --> Al2S3 nAl= m/M = 9/13 = 0.692307 moles of Al nS= m/M = 8/16 = 0.5 moles of S Limiting Reagent: 1.5 moles of S required for every mole of Al (3:2 ratio) This means that there should be about 1.04 moles of S to completely use up all the Al. Since there is less than this amount of S present (only 0.5 moles), S is the limiting reagent and should be used in the mole calculation of the product Amount of product: 0.5 moles S x (1 mol Al2S3/ 3 mol S) = 0.16666 moles of Al2S3 nAl2S3 = m/M Molecular weight of Al2S3 = (2 x 13) + (3 x 16) = 74 0.16666 moles Al2S3 = m/74 m = 74 x 0.16666 = 12.33 grams of Al2S3 Therefore, 12.33 grams of Al2S3 is formed in this reaction ( hopefully this is right :P )
The gram atomic mass of phosphorus is 30.9738, and by definition, a mole of such atoms contains Avogadro's Number of atoms. Therefore, 100 g of phosphorus contains 100/30.9738 or 3.23 moles, to the justified number of significant digits.
To calculate the number of moles of sodium borohydride in 100 mg, you need to know the molar mass of the compound, which is 37.83 g/mol. First, convert 100 mg to grams (0.1 g), then divide by the molar mass to get the number of moles, which is approximately 0.0026 moles.
1 mol = 118.94 1 mol / 118.94 = 1.70 / x G = 202.10g
The atomic weight of magnesium is 24.31; therefore, the number of moles in 100 gm is 100/24.31 = 4.11, to the justified number of significant digits.
To find the number of moles of phosphorus atoms in 100 grams of P4S10, we first need to determine the molar mass of P4S10 which is 284.26 g/mol. Next, we calculate the number of moles of P4S10 in 100 grams by dividing 100 g by the molar mass to get 0.352 moles of P4S10. Since there are 4 phosphorus atoms in each P4S10 molecule, there are 0.352 moles x 4 = 1.41 moles of phosphorus atoms in 100 grams of P4S10.
Ah, isn't that a lovely question? To find the number of moles in 100 g of MgCO3, we first need to know the molar mass of magnesium carbonate (MgCO3). Then, we can use the formula: moles = mass / molar mass. Just like painting a happy little tree, it's all about following the steps and enjoying the journey to the answer.
The formula is: number of moles = g Be/9,012.
Aluminum sulfide has a molar mass of 150.16 grams per mole. This means there are 0.666 moles present, or 4.01 E23 molecules. Each molecule of Al2S3 has 2 aluminum atoms, so there are 8.02 E23 atoms of aluminum present.
14,84 g magnesium are equivalent to 0,61 moles.
97,5 g of oxygen is equal to 5,416 moles.