If the heater is RATED at 5kw and is DESIGNED for 240v, it will draw 20.8 amps if 240v is applied.
I say it this way because you probably will not have exactly 240v. You may have as little as 220v or as much as 250v and still successfully operate this heater. But the difference in voltages would give you different currents.
For USA, Canada and countries running a 60 Hz supply service...
In general practice you would connect this heater to a 30amp 2-pole breaker using #10 gauge wire.
<><><>
As always, if you are in doubt about what to do, the best advice anyone should give you is to call a licensed electrician to advise what work is needed.
Before you do any work yourself,
on electrical circuits, equipment or appliances,
always use a test meter to ensure the circuit is, in fact, de-energized.
IF YOU ARE NOT ALREADY SURE YOU CAN DO THIS JOB
SAFELY AND COMPETENTLY
REFER THIS WORK TO QUALIFIED PROFESSIONALS.
Depends on the voltage. Wattage is Volts x Amps. Resistance (ohms) is Volts divided by Amps. So on a 120V circuit, it would draw 41.66 amps. To do that, it would need a resistance of 2.88 ohms. But on a 240V circuit, it would draw 20.83 amps. That would require a resistance of 11.52 ohms. Determine the circuit voltage, then use that to figure the amps, then use that result to calculate the resistance necessary.
The formula you are looking for is I = W/E.
To calculate the amperage draw, you need to know the voltage of the circuit where the 2500 watts appliance will be used. You can use the formula: Amps = Watts / Volts. For example, if it is a 120V circuit, the amperage draw would be 2500 watts / 120 volts = 20.83 amps.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
Watts = Amps x Volts for a resistive load like a water heater.
Watts = Volts times Amps. Therefore, if the voltage was 220 volts, the motor would draw 500 amps. If the voltage was 4,000 volts, the motor would draw 27.5 amps. The voltages for large powerful motors tend to be relatively high, for example in the 380 Volts to 11,500 Volts range.
Depends on the voltage. Wattage is Volts x Amps. Resistance (ohms) is Volts divided by Amps. So on a 120V circuit, it would draw 41.66 amps. To do that, it would need a resistance of 2.88 ohms. But on a 240V circuit, it would draw 20.83 amps. That would require a resistance of 11.52 ohms. Determine the circuit voltage, then use that to figure the amps, then use that result to calculate the resistance necessary.
The formula you are looking for is I = W/E.
To calculate the amperage draw, you need to know the voltage of the circuit where the 2500 watts appliance will be used. You can use the formula: Amps = Watts / Volts. For example, if it is a 120V circuit, the amperage draw would be 2500 watts / 120 volts = 20.83 amps.
You would need to use a #12 copper conductor to continuously draw 14 amps at 120 volts.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
Watts = Amps x Volts for a resistive load like a water heater.
The formula you are looking for is I = W/E. Amps = Watts divided by Volts.
To calculate the amperage draw, you can use the formula P = V x I, where P is the power in watts, V is the voltage in volts, and I is the current in amps. Given that the power is 1200 watts and voltage is 120 volts, you can rearrange the formula to solve for current. Therefore, I = P / V, so the amperage draw of the heater would be 10 amps.
A2.2 kW kettle will draw 9.16 amps at 240 volts. I = W/E. Amps = Watts/Volts.
To find amps if watts and volts are known, use the formula; watts / volts = amps or 5000 / 240 = 20.83 amps
Assuming a typical lay-in fixture is around 40 watts, it would draw approximately 0.15 amps at 277 volts. It's always recommended to check the specific fixture's specifications for accurate information.