It means 225 amps on each phase.
In a three phase 225 amp panel, there would be a total of 225 amps available for each phase, making it a total of 675 amps for all three phases combined. This means that you could have up to 225 amps of current flowing through each phase simultaneously.
On a 50 amp 3 phase connector, you can pull 50 amps per leg. This means that each of the three phases can carry up to 50 amps individually, resulting in a total capacity of 50 amps per leg.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
The equation that you are looking for is Amps = Watts/Volts. There are 6000 watts in 6kW.
To convert from kilowatts (kW) to amps in a 3-phase system, you can use the formula: Amps = (kW × 1000) / (√3 × volts). In this case, with 42 kW and a voltage of 120208 V, the amperage would be around 139 amps.
In a three phase 225 amp panel, there would be a total of 225 amps available for each phase, making it a total of 675 amps for all three phases combined. This means that you could have up to 225 amps of current flowing through each phase simultaneously.
For a single phase circuit, the equation you are looking for is I = W/E. Amps = Watts/Volts.
50 Amps Single Phase 20 Amps Three Phase
106 amps
On a 50 amp 3 phase connector, you can pull 50 amps per leg. This means that each of the three phases can carry up to 50 amps individually, resulting in a total capacity of 50 amps per leg.
9
To answer this question the voltage of the generator must be given.
62.5 amps
At 240v single phase it's 70.8 amps. If it runs on 2 wires plus ground, take the voltage rating of the equipment and divide that into the watts to get amps. At 480v 3 phase it's 25.8 amps. At 208v 3 phase it's 47.2 amps. <<>> There are zero amps in 14 kW. A voltage needs to be stated. I = W/E, Amps = Watts/Volts.
UK Mains is 230V therefore 6 KW is 6000/230 = 26 Amps. 3 phase is slightly different....... 6000/400V = 15 Amps/root 3 = 8.67 Amps per phase.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
UK Mains is 230V therefore 6 KW is 6000/230 = 26 Amps. 3 phase is slightly different....... 6000/400V = 15 Amps/root 3 = 8.67 Amps per phase.