Gamma decay don't affect the atomic number.
The atomic number of a nucleus does not change in gamma decay since no particles are emitted. In alpha decay, the atomic number decreases by 2 and the mass number decreases by 4. In beta decay, the atomic number increases by 1 (due to conversion of a neutron to a proton) while the mass number remains the same.
The mass does not change much. The Atomic number will increase though.
When an unstable magnesium nucleus undergoes gamma decay, it remains as a magnesium nucleus. Gamma decay does not change the atomic number or mass number of the nucleus, only releasing a gamma photon to reduce excess energy.
It depends on what caused the gamma event in the first place.Strictly speaking, gamma radiation is caused by the de-excitation of the nucleus, so the atomic number (and Atomic Mass) does not change during a gamma event.However, the gamma event is usually precipitated by some other event, such as a beta or alpha decay that does change the configuration of the nucleus. An alpha event reduces the atomic number by 2 (and reduces the atomic mass by 4), while the beta event increases the atomic number by 1 (and does not change the atomic mass very much).Its actually more complex than that, but the answer to the original question is that nothing really happens to the atomic number during a gamma event.
no, gamma isn't really decay as the radioactive ion doesn't emit any particles. In alpha and beta decay, different size particles are emitted as the nucleus decays but in gamma radiatio the ion gives off an ionising electromagnetic wave.
The atomic number of a nucleus does not change in gamma decay since no particles are emitted. In alpha decay, the atomic number decreases by 2 and the mass number decreases by 4. In beta decay, the atomic number increases by 1 (due to conversion of a neutron to a proton) while the mass number remains the same.
The mass does not change much. The Atomic number will increase though.
In gamma decay ,nucleus lose a charge of -1 and the daughter nucleus has charge of Z+1.
When an unstable magnesium nucleus undergoes gamma decay, it remains as a magnesium nucleus. Gamma decay does not change the atomic number or mass number of the nucleus, only releasing a gamma photon to reduce excess energy.
Gamma decay is the release of energy, but does not in itself change the nucleas Alpha decay is the loss of 2 protrons and 2 neutrons, lowering the atomic number by 2 and mass number by 4 Beta can occur as a result of a neutron turning into a protron, raising the atomic number by 1 and charge by 1
It depends on what caused the gamma event in the first place.Strictly speaking, gamma radiation is caused by the de-excitation of the nucleus, so the atomic number (and Atomic Mass) does not change during a gamma event.However, the gamma event is usually precipitated by some other event, such as a beta or alpha decay that does change the configuration of the nucleus. An alpha event reduces the atomic number by 2 (and reduces the atomic mass by 4), while the beta event increases the atomic number by 1 (and does not change the atomic mass very much).Its actually more complex than that, but the answer to the original question is that nothing really happens to the atomic number during a gamma event.
There are three main types of radioactive decay: alpha decay, beta decay, and gamma decay. Alpha decay involves the emission of an alpha particle, which is a helium nucleus consisting of two protons and two neutrons. This type of decay reduces the atomic number of the nucleus by 2 and the mass number by 4. Beta decay involves the emission of a beta particle, which can be either an electron (beta-minus decay) or a positron (beta-plus decay). Beta decay changes the atomic number of the nucleus by 1 but does not significantly affect the mass number. Gamma decay involves the emission of gamma rays, which are high-energy photons. Gamma decay does not change the atomic number or mass number of the nucleus but helps the nucleus reach a more stable energy state. These types of decay differ in the particles emitted and the changes they cause to the nucleus.
Setting aside spontaneous fission, which is the natural "splitting" of an atom into fissin fragments, it is alpha decay that results in the greatest change in atomic number. The alpha particle carries off a helium-4 nucleus, which is a pair of protons and a pair of neutrons. Atomic number of an element involved in an alpha decay goes down by two.
Alpha decay does not result in the change of one element into another element. In alpha decay, a radioactive atom emits an alpha particle, which is a helium nucleus consisting of two protons and two neutrons. The parent atom loses two protons through this process, but it remains the same element because its atomic number decreases by 2 to account for the lost protons.
The change in atomic number after an alpha decay event occurs is a decrease of 2.
no, gamma isn't really decay as the radioactive ion doesn't emit any particles. In alpha and beta decay, different size particles are emitted as the nucleus decays but in gamma radiatio the ion gives off an ionising electromagnetic wave.
They don't. Only atoms really have an atomic number, which is the number of protons in each atom, so when that number changes as in alpha and beta radiation the atom no longer has a neutral charge and becomes an ion. Gamma radiation is an electro-magnetic wave so it doesn't affect the atomic number and the particle is still an atom. Hypothetically, nd I'm not sure it's possible, alpha radiation would reduce the atomic number by 2, beta would reduce it by 1 and gamma doesn't reduce it at all anyway.