chromosomes appear as packets of four chromatids during anaphase. This is when the chromatids start to move and separate in preparation of the creation of four cells.
The chromatids become daughter chromosomes during the anaphase stage of meiosis, specifically during anaphase II in the case of meiosis II. In these stages, the chromatids are separated and move towards opposite poles of the cell, becoming individual chromosomes.
In anaphase I of meiosis, the homologous pairs of chromosomes separate. Due to DNA replication and crossing over during prophase I, these chromosomes consist of a pair of non-identical sister chromatids. During anaphase II of meiosis, the sister chromatids separate into individual chromosomes.
Nondisjunction is the failure to segregate homologous chromosomes or sister chromatids properly during meiosis, leading to an incorrect number of chromosomes in the resulting gametes. This can result in genetic disorders such as Down syndrome.
A pachytene is the third prophase of meiosis, during which the chromosomes shorten and divide into four chromatids.
Chromatids in eukaryotic cells separate during the process of mitosis or meiosis. In mitosis, chromatids separate during anaphase to form individual chromosomes, while in meiosis, chromatids separate during anaphase II to produce haploid daughter cells.
At the end of meiosis II and cytokinesis, haploid cells contain chromosomes that each consist of two sister chromatids. This is because during meiosis I, homologous chromosomes separate, and during meiosis II, sister chromatids separate.
The chromatids line up at the equator of the cell during the metaphase of meiosis. After which the chromatids separate to form individual chromosomes.
During meiosis, the sister chromatids of chromosomes separate into different cells, ultimately resulting in four haploid daughter cells.
Two
At the end of meiosis II, nuclei do have chromosomes because this phase involves the separation of sister chromatids, which are the result of the earlier replication of chromosomes during meiosis I. Each daughter cell produced from meiosis II ends up with a haploid set of chromosomes, consisting of individual chromatids. These chromatids are considered chromosomes in their own right, as they contain the genetic information necessary for the resulting gametes. Therefore, the presence of chromosomes at the conclusion of meiosis II is essential for ensuring that each gamete receives the correct genetic material.
The chromosomes split equally and move to the opposite sides of the cell.
At the beginning of meiosis, a cell with 46 chromosomes would undergo DNA replication to end up with 92 chromatids. During anaphase 2 of meiosis, these chromatids would separate, resulting in daughter cells with 46 chromosomes each, the same as the original cell before replication.