sss is when the 3 sides are congruent. all 3 angles are congruent
there are 4 types of congruence theorem-: ASA,SSS,RHS,SAS
SSS
the congruence theorems or postulates are: SAS AAS SSS ASA
Congruent - SSS
no sss and sas do
It is a special case of:the 3 sides (SSS) congruence, using Pythagoras,the 2 sides and included angle (SAS) congruence, using the sine rule.
true
No, the side-side-angle in congruence shortcut DOESN'T exist..hint-SSA turns backward--->ASS<---thats the problem of no word will come on math..kinda funny to laugh about but SSA=GET rid off it! use SSS, SAS, ASA, SAA, SSS, and AAA.
Here is the answer to your query. Consider two ∆ABC and ∆PQR. In these two triangles ∠B = ∠Q = 90�, AB = PQ and AC = PR. We can prove the R.H.S congruence rule i.e. to prove ∆ABC ≅ ∆PQR We need the help of SSS congruence rule. We have AB = PQ, and AC = PR So, to prove ∆ABC ≅ ∆PQR in SSS congruence rule we just need to show BC = QR Now, using Pythagoras theorems in ∆ABC and ∆PQR Now, in ∆ABC and ∆PQR AB = PQ, BC = QR, AC = PR ∴ ∆ABC ≅ ∆PQR [Using SSS congruence rule] So, we have AB = PQ, AC = PR, ∠B = ∠Q = 90� and we have proved ∆ABC ≅ ∆PQR. This is proof of R.H.S. congruence rule. Hope! This will help you. Cheers!!!
In mathematics, "SSS" typically refers to the Side-Side-Side theorem, which is a criterion used to determine the congruence of triangles. According to this theorem, if three sides of one triangle are equal in length to three sides of another triangle, then the two triangles are congruent. This means that they have the same shape and size, although their positions may differ. The SSS criterion is fundamental in geometry for proving triangle congruence.
The correct answer is the AAS theorem
they are all postulates or shortcuts on finding 2 triangles congruence, except that SAA does not exist.