Specific resistivity is directly proportional to area of cross section of the conductor and specific conductivity is the inverse of specific resistivity. So we can say , Specific conductivity is directly proportional to area of cross section of the conductor.
The thicker the conductor, the less the current that will flow through.
Conductor-one which conducts(allow current)electric city in all condition. Semiconductor-One which behaves like conductor as well as insulator depending on condition. Insulator-one which donot conduct(allow current)electric city in all condition
The term, 'overcurrent', describes either an 'overload current' or a 'short-circuit current'.An 'overload current' is a current that is higher than a circuit's 'rated current'. For example, if you have too many loads plugged into the same circuit, then the resulting current is an 'overload current'.A 'short-circuit current' is a large current resulting when a line ('hot') conductor accidentally makes contact with either a neutral conductor or an earth (ground) conductor.
pogi current flow in the armature conductor
Current specifically refers to the movement electrons through an electric conductor. Electricity is a more general term.
The relationship between the current flowing through a conductor and the magnetic field it generates is described by Ampere's law. When an electric current flows through a conductor, it creates a magnetic field around the conductor. The strength of the magnetic field is directly proportional to the amount of current flowing through the conductor. This phenomenon is the basis for electromagnetism and is used in various applications such as electric motors and generators.
the relationship between the deflection of the wire and the ccurrent is when the voltage is 12volt the current become higher.Another AnswerPresumably you are referring to the force on a conductor placed in a magnetic field? In which case, it is equal to the Flux Density of the field (in teslas), the length of the conductor within the field (in metres), and the value of the current passing through the conductor (in amperes).
The "current" through any conductor is voltage across the conductor/conductor's resistance .The current is measured in "Amperes" (amps)."MA" stands for "Milliamps". There are 1,000 of those in one whole ampere.So, the current through a conductor is1,000 times the voltage across the conductor/conductor's resistance . . . in MA
-- A current flowing through a conductor creates a magnetic field around the conductor. -- Moving a conductor through a constant magnetic field creates a current in the conductor. -- If there's a conductor sitting motionless in a magnetic field, a current flows in the conductor whenever the strength or direction of the magnetic field changes.
The magnetic force experienced by a current-carrying conductor is directly proportional to the magnitude of the current flowing through it. This relationship is described by the right-hand rule for magnetic fields, where the direction of the force on the conductor can be determined by pointing the thumb of your right hand in the direction of the current and the fingers in the direction of the magnetic field.
Ohm's law describes the relationship between voltage, current, and resistance in an electrical circuit. It states that the current flowing through a conductor is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the conductor. This means that if the voltage increases, the current will also increase, but if the resistance increases, the current will decrease.
The relationship between voltage (V), current (I) and resistance (R) is known as Ohm's Law. It states that the current flowing through a conductor is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the conductor. The equation is expressed as V = I * R.
Diode is a non-ohmic conductor since in diodes current-voltage relation ship does't obey Ohm's law....the relationship between current and voltage is nonlinear here,...
The thicker the conductor, the less the current that will flow through.
The link between electricity and magnetism is described by electromagnetism, a fundamental force of nature. When an electric current flows through a conductor, it generates a magnetic field around the conductor. Similarly, a changing magnetic field can induce an electric current in a nearby conductor, demonstrating the close relationship between electricity and magnetism.
The relationship between electricity and magnetism is known as electromagnetism. This relationship was discovered by physicist James Clerk Maxwell in the 19th century. Essentially, when an electric current flows through a conductor, it creates a magnetic field around it. Similarly, a changing magnetic field can induce an electric current in a conductor. This connection between electricity and magnetism is fundamental to many technologies, such as electric motors, generators, and transformers.
Mercury is a metal that is a good conductor of electricity. This means that it allows electric current to flow through it easily.