Intact Limestone can have a Young's modulus (E) ranging from:
9 GPa - 80 GPa.A,B
Poisson's ratio (v) for intact specimens varies from between:
0.2 - 0.3.B
Bulk modulus (K) derived from the above values using the following relation:
K = E / (3(1-(2v))
Bulk Modulus ranges from:
5 GPa - 66.67 GPa
Shear modulus (G) derived from the above values using the following relation:
G = E / 2(1+v)
Shear modulus ranges from:
3.5 GPa to 33.33 GPa
Limestone is a natural earth material and so significant variability in stiffness properties may occur, as such ranges of values are commonly quoted for the strength of rock and other geotechnical materials. Ideally therefore the user would have access to specific lab test data for the rock type in question.
Please see the related questions.
Sources:
A Bell, F. G. (2007). Basic Environmental and Engineering Geology. Dunbeath, Whittles Publishing Limited.
B Cobb, F. (2009). Structural Engineer's Pocket Book, Second edition. London, Butterworth-Heinemann.
The elastic modulus, also called Young's modulus, is identical to the tensile modulus. It relates stress to strain when loaded in tension.
p -0.29,e-12.4e3mpa
Yes, indeed. Sometimes tensile modulus is different from flexural modulus, especially for composites. But tensile modulus and elastic modulus and Young's modulus are equivalent terms.
1. Young's modulus of elasticity, E, also called elastic modulus in tension 2. Flexural modulus, usually the same as the elastic modulus for uniform isotropic materials 3. Shear modulus, also known as modulus of rigidity, G ; G = E/2/(1 + u) for isotropic materials, where u = poisson ratio 4. Dynamic modulus 5. Storage modulus 6. Bulk modulus The first three are most commonly used; the last three are for more specialized use
This is known as the Modulus of Elastisity, or Youngs Modulus (in tension/compression) and will be a constant as long as the deformation is in the elastic range.
The relationship between stiffness and elastic modulus in materials is that the elastic modulus is a measure of a material's stiffness. A higher elastic modulus indicates a stiffer material, while a lower elastic modulus indicates a more flexible material. In other words, stiffness and elastic modulus are directly related in that a higher elastic modulus corresponds to a higher stiffness in a material.
The Young modulus and storage modulus measure two different things and use different formulas. A storage modulus measures the stored energy in a vibrating elastic material. The Young modulus measures the stress to in still elastic, and it is an elastic modulus.
The unit of measurement for the elastic modulus is pascals (Pa).
The elastic modulus, also called Young's modulus, is identical to the tensile modulus. It relates stress to strain when loaded in tension.
Yes, Young's modulus and elastic modulus are the same thing. They both refer to a material's ability to deform elastically under stress.
Yes, the elastic modulus is the same as Young's modulus. Both terms refer to a material's ability to deform elastically under stress.
The elastic modulus of shale is between 1-70 GPa
The shear modulus and elastic modulus are related properties that describe a material's response to deformation. The shear modulus specifically measures a material's resistance to shearing forces, while the elastic modulus, also known as Young's modulus, measures a material's resistance to stretching or compression. In general, the shear modulus is related to the elastic modulus through the material's Poisson's ratio, which describes how a material deforms in response to stress.
Elastic modulus affects the speed of sound propagation in a material. Materials with higher elastic modulus values transmit sound waves faster than those with lower elastic modulus values. Essentially, the higher the elastic modulus, the faster sound travels through the material.
Young's modulus and elastic modulus are often used interchangeably, but there is a subtle difference between the two. Young's modulus specifically refers to the ratio of stress to strain in the elastic region of a material's stress-strain curve, while elastic modulus is a more general term that can refer to any modulus of elasticity that describes a material's ability to deform elastically under stress.
Elastic modulus and Young's modulus both measure a material's stiffness, but they are not the same. Young's modulus specifically measures a material's resistance to deformation under tension or compression, while elastic modulus is a more general term that can refer to various types of deformation. In terms of material properties, Young's modulus is a specific type of elastic modulus that is commonly used to characterize a material's stiffness.
Elastic modulus and tensile modulus both measure a material's stiffness, but they do so in different ways. Elastic modulus measures a material's resistance to deformation under a specific load, while tensile modulus measures its resistance to stretching or pulling. In terms of material properties, elastic modulus is more commonly used and provides a general measure of a material's stiffness, while tensile modulus is more specific to how a material responds to tension.