answersLogoWhite

0


Best Answer

There are two distinct models of thread controls, and they are user-level threads and kernel-level threads. The thread function library to implement user-level threads usually runs on top of the system in user mode. Thus, these threads within a process are invisible to the operating system. User-level threads have extremely low overhead, and can achieve high performance in computation. However, using the blocking system calls like read(), the entire process would block. Also, the scheduling control by the thread runtime system may cause some threads to gain exclusive access to the CPU and prevent other threads from obtaining the CPU. Finally, access to multiple processors is not guaranteed since the operating system is not aware of existence of these types of threads. On the other hand, kernel-level threads will guarantee multiple processor access but the computing performance is lower than user-level threads due to load on the system. The synchronization and sharing resources among threads are still less expensive than multiple-process model, but more expensive than user-level threads. Thus, user-level thread is better than kernel level thread.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the circumstances of user level thread better than kernel level thread?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Difference between kernel mode and user mode?

Kernel ModeIn Kernel mode, the executing code has complete and unrestricted access to the underlying hardware. It can execute any CPU instruction and reference any memory address. Kernel mode is generally reserved for the lowest-level, most trusted functions of the operating system. Crashes in kernel mode are catastrophic; they will halt the entire PC.User ModeIn User mode, the executing code has no ability to directly access hardware or reference memory. Code running in user mode must delegate to system APIs to access hardware or memory. Due to the protection afforded by this sort of isolation, crashes in user mode are always recoverable. Most of the code running on your computer will execute in user mode.


Difference between Java threads and user level thread?

A Java thread can be considered as similar to a user level thread. Let us say you are running a web browser, windows media player and GTalk for chat simultaneously - Actually the operating system is running an individual thread for each of these apps which gives you a seamless feeling of things running in parallel. Similarly Java Threads are features in the Java programming language that allow you to run multiple JVM tasks in parallel.


In an amp What is better high or low signal to noise ratio?

Signal to noise ratio is the difference between the noise floor and the reference level.


What is the difference between a Parent Process and Foreground Process?

A parent process is a process that has spawned one or more child processes such that it takes "ownership" of those processes. A foreground process typically means a process that has a user-interface as opposed to a background process which typically does not. Most background processes are services while most foreground processes are applications. It's important to note that the term "process" has a specific meaning in a multi-processing environment. A process is a computer program that has one or more threads of execution. A thread is the machine-level representation of a task and a process may instantiate as many tasks as are required (hardware permitting). All tasks share the same memory space as the process itself, however each task has its own stack for local storage, as well as to enable the thread's function call-and-return mechanism in addition to thread-local exception handling. Every process must have at least one thread of execution typically referred to as the main thread because that is the thread that executes the program's global main function (the entry point of the application) and subsequently instantiates any additional threads required by the main thread. The additional threads are usually called worker threads and any thread can instantiate its own worker threads. Unlike parent/child processes, thread's cannot "own" other threads; the threads are owned by the process. However, it is possible for worker threads to be controlled by other threads in the same process, so in that sense the controlling thread can be said to be a parent thread. When the main function returns, the main thread terminates, however any active threads within the process will continue executing, thus keeping the process "alive". In many cases this would be undesirable particularly if those threads attempt to access shared memory that is released by the main thread. So although there is no notion of ownership amongst threads, any controlling thread that must terminate before its workers have completed their tasks should signal its workers to terminate and then wait for them to terminate before terminating itself. Threads of execution within a process execute concurrently. All this means is that the operating system's task scheduler gives each thread a time-slice of the CPU to do some work, before saving the thread's state and moving onto the next thread (which may belong to another process entirely). Task-switching is so rapid that it can appear as though all threads are executing simultaneously, however that is only physically possible when the CPU has 2 or more cores available. Only one thread may execute upon any single core at any given moment. Multiple threads are typically used to maintain responsiveness. In a GUI environment, a time-consuming task would take up the entire time-slice of a process so it won't be able to respond to any messages on the message queue unless the task specifically checks the queue periodically. However, by using a worker thread to carry out the task, the controlling thread can remain responsive to messages. The message queue can also be used by threads to signal other threads, thus a controlling thread can respond to periodic progress reports from its worker threads if required. In this sense it can be said that the worker threads are background tasks, while the controlling thread is the foreground task.


What is thread class in java?

The ability of a program to concurrently execute multiple regions of code provides capabilities that are difficult or impossible to achieve with strictly sequential languages. Sequential object-oriented languages send messages (make method calls) and then block or wait for the operation to complete. Programmers are already familiar with concurrent processes, possibly without recognizing them. For example, operating systems usually have many processes running to handle printing, updating the display, receiving mail from the network, and so on. In contrast, most programming languages do not promote the use of concurrent operations within one application. At best, programmers have access to a few library calls to launch and control multiple operations. Java provides language-level and library support for threads--independent sequences of execution within the same program that share the same code and data address space. Each thread has its own stack to make method calls and store local variables. Most applications that use threads are a form of simulation or have a graphical user interface, but threads in general have the following advantages over sequential programming: Threads support concurrent operations. For example, Server applications can handle multiple clients by launching a thread to deal with each client. Long computations or high-latency disk and network operations can be handled in the background without disturbing foreground computations or screen updates. Threads often result in simpler programs. In sequential programming, updating multiple displays normally requires a big while-loop that performs small parts of each display update. Unfortunately, this loop basically simulates an operating system scheduler. In Java, each view can be assigned a thread to provide continuous updates. Programs that need to respond to user-initiated events can set up service routines to handle the events without having to insert code in the main routine to look for these events. Threads provide a high degree of control. Imagine launching a complex computation that occasionally takes longer than is satisfactory. A "watchdog" thread can be activated that will "kill" the computation if it becomes costly, perhaps in favor of an alternate, approximate solution. Note that sequential programs must muddy the computation with termination code, whereas, a Java program can use thread control to non-intrusively supervise any operation. Threaded applications exploit parallelism. A computer with multiple CPUs can literally execute multiple threads on different functional units without having to simulating multi-tasking ("time sharing"). On some computers, one CPU handles the display while another handles computations or database accesses, thus, providing extremely fast user interface response times.

Related questions

Describe the action taken by a kernel to context switch between kernel level threads?

Context switching between kernel threads typically requires saving the value of the CPU registers from the thread being switched out and restoring the CPU registers of the new thread being scheduled.


What are the advantages and disadvantages of user level threads and kernel level threads?

- USER LEVEL THREADS Aadvantages: · User-level threads can be implemented on operating system that does not support threads. · Implementing user-level threads does not require modification of operating system where everything is managed by the thread library · Simple representation which the thread is represented by a the thread ID, program counter, register, stack , all stored in user process address space · Simple management where creating new threads, switching threads and synchronization between threads can be done without intervention of the kernel · Fast and efficient where switching thread is much more inexpensive compared to a system call - Disadvantages: · There is a lack of coordination between threads and operating system kernel. A process gets one time slice no matter it has 1 thread or 10000 threads within it. It is up to the thread itself to give up the control to other threads · If one thread made a blocking system call, the entire process can be blocked in the kernel, even if other threads in the same process are in the ready state KERNEL LEVEL THREAD: - Advantages: · Because kernel has the full knowledge of all the threads, scheduler may decide to allocate more time to a process having large number of threads than process having small number of thread, where the kernel threads come useful for intense application - Disadvantages: · Kernel level threads are slow and inefficient, since kernel must manage and schedule all the threads as well as the processes. It requires a full TCB for each thread to maintain information about threads, which results in increasing of overheads and kernel complexity


Is there one stack per process when user level threads are used?

In both kernel and User level they have one stack per thread


What is kernel thread?

KERNEL In computing, the kernel is the central component of most computer operating systems; it is a bridge between applications and the actual data processing done at the hardware level. The kernel's responsibilities include managing the system's resources (the communication between hardware and software components).


What is the difference between Kernel and User level thread?

A kernel thread, sometimes called a LWP (Lightweight Process) is created and scheduled by the kernel. Kernel threads are often more expensive to create than user threads and the system calls to directly create kernel threads are very platform specific. A user thread is normally created by a threading library and scheduling is managed by the threading library itself (Which runs in user mode). All user threads belong to process that created them. The advantage of user threads is that they are portable. The major difference can be seen when using multiprocessor systems, user threads completely managed by the threading library can't be ran in parallel on the different CPUs, although this means they will run fine on uniprocessor systems. Since kernel threads use the kernel scheduler, different kernel threads can run on different CPUs. Many systems implement threading differently, A many-to-one threading model maps many user processes directly to one kernel thread, the kernel thread can be thought of as the main process. A one-to-one threading model maps each user thread directly to one kernel thread, this model allows parallel processing on the multiprocessor systems. Each kernel thread can be thought of as a VP (Virtual Process) which is managed by the scheduler.


What are user level threads?

•No special support needed from the kernel (use any Unix) •Thread creation and context switch are fast (no syscall) •Defines its own thread model and scheduling policies


Is user level threads are transparent to kernel level threads?

user level theads are not tranparent to kernel level threads.


What takes longer a context switch with user level threads or one with kernel level threads?

Kernel level threads take a longer time to context switch since OS will have to save and reload each and every TCB (Thread Control block) where as in user level no kernel intervention threads simply context switch more efficiently. But there are disadvantages such as since OS sees the user leve threads as a whole process it will not give a large portion of CPU time for execution if a thread is blocked the whole process goes to the waiting state please correct my answer if im wrong godlovesu49@hotmail.com thanks regards yo


When a user-level thread executes a system call not only is that thread blocked but also all the threads within the process are blocked Why is that so?

A system call is actually a transition from user mode to kernel space to carry out a required operation.. For exp: Write() function resides in kernel space and can be accessed by a only corresponding wrapper function which was implemented in user space.. In case of Windows OS, Win32 API is the implementation to such as wrapper functions that make the actual system calls from user mode.. A kernel thread is created, scheduled and destroyed by the kernel.. Whereas a library thread (user thread) is created, scheduled and destroyed by a user level library like special threading libraries.. The kernel does know of nothing about library threads since they live in a process's boundaries and bound to its life cycle tightly.. Actually, a process is not the primary execution unit in all operating systems.. When a process is made by kernel, a new kernel thread is created and attached to that process in question.. So the library threads created in user mode by a user mode library must share the time slices given to the kernel thread by the scheduler arbitrarily during the lifetime of a process.. So a process actually has one kernel thread and all other library threads have to share the kernel thread's cycles.. Hence when a library thread makes a blocking call, all the threads within the process are blocked because as I said, actually process has only one kernel thread assigned to it and others try to make use of it.. So to prevent other threads from blocking, either you should use library threads that make use of kernel threads or you could just use the CreateThread() Win32 API system function for kernel threads but the synchronization mechanism must be provided by the programmer using events, signals, mutex, semaphore etc.. Sun, BSD Unix flavours, Windows etc follow the same threading architecture in their systems as POSIX standard.. However, a thread is a process in Linux.. That's why Linux is so powerful in server systems.. So the control is left to programmers to create a POSIX way of treading model by Clone(2) system call(s).. So address space and data etc can be shared by lightweight processes easily.. When a Linux kernel thread (child process) is crashed, it won't affect the rest of the threads belong to parent process.. This is just the opposite in other operating systems that a crashing thread will destroy all of the threads in the process.. NPTL is a great threading library that was implemented by using Linux clone(2) system call.. Linux also has another type of kernel thread only lives in kernel space that can be utilized by kernel code like modules.. User threads can't be run in parallel on the different CPUs because of this. However, they are portable.. Kernel threads can be scheduled by kernel to be run on a SMP system.. Hope this helps.. hsaq19@ TH Algan


Example for user level threads and kernel level threads?

hjhgjhgj


What is the Linux kernel?

The Linux kernel is the central component of the GNU/Linux operating system. The kernel is the lowest level of interaction between the hardware and the operating system. Individual applications are at a higher level. The kernel along with supporting applications make up the operating system.


What are kernel level threads?

KERNEL In computing, the kernel is the central component of most computer operating systems; it is a bridge between applications and the actual data processing done at the hardware level. The kernel's responsibilities include managing the system's resources (the communication between hardware and software components).