Resistance load it means there is passive load to impede current flow. Inductive load means there is a coil as a load while still a passive it has its own characteristics which differs from a resistive load which is linear while inductive is not linear load
non- inductive load is without motor and transformer loads are non-inductive load, purely resistive are capacitive loads phase angle is unity are leading PF A non-inductive load is a load whose current does not change instantaneously.
A purely resistive load is one in which there is no capacitive or inductive reactance. Whe driven by an AC voltage source, such a load will have no shift in phase angle between voltage and current.
It isn't necessarily so. The capacitive voltage is the product of the current and capacitive reactance, while the inductive voltage is the product of the current and the inductive reactance. So it depends whether the capacitive reactance is greater or smaller than the inductive reactance!
Inductive reactance.
A transformer is fundamentally a set of coils; therefore, a transformer is an inductive load. However, by "transformer load", you seem to mean "the load that is connected to a transformer". Whether that load is inductive or capacitive depends mostly on what is hooked up to the transformer.
Resistance load it means there is passive load to impede current flow. Inductive load means there is a coil as a load while still a passive it has its own characteristics which differs from a resistive load which is linear while inductive is not linear load
non- inductive load is without motor and transformer loads are non-inductive load, purely resistive are capacitive loads phase angle is unity are leading PF A non-inductive load is a load whose current does not change instantaneously.
non- inductive load is without motor and transformer loads are non-inductive load, purely resistive are capacitive loads phase angle is unity are leading PF A non-inductive load is a load whose current does not change instantaneously.
hyhjyjyjy
A purely resistive load is one in which there is no capacitive or inductive reactance. Whe driven by an AC voltage source, such a load will have no shift in phase angle between voltage and current.
A load of any type,,,inductive or capacitive , would effect the circuit even if THOSE "loads" had no load on them. They would still have a load effect on the circuit they are connected to.Answer'Under no-load conditions' means that no load is connected to the supply. So your question doesn't make sense!
No power is dissipated by a load composed exclusively of either capacitive or inductive reactance.
No because the very first component in the power supply is a transformer, which makes for it being an inductive load.
Power factor is determined by the nature (resistive, inductive, capacitive) of a load, not whether it is a low load or a high load.
No. It depends on the inductive and capacitive reactance of the load.
A capacitor is a device that resists a change in voltage, proportional to current and inversely proportional to capacitance. dv/dt = i/c An inductor is a device that resists a change in current, proportional to voltage and inversely proportional to inductance. di/dt = v/l In an AC circuit with capacitive loading, the current waveform will lead the voltage waveform; while with inductive loading, the current waveform will lag the voltage waveform.