In the formula for calculating a parabola the letters h and k stand for the location of the vertex of the parabola. The h is the horizontal place of the vertex on a graph and the k is the vertical place on a graph.
It depends on where points h and k are, in which parabola. Since you have chosen not to share that information, there cannot be any sensible answer to this question.
The focus of a parabola is a fixed point that lies on the axis of the parabola "p" units from the vertex. It can be found by the parabola equations in standard form: (x-h)^2=4p(y-k) or (y-k)^2=4p(x-h) depending on the shape of the parabola. The vertex is defined by (h,k). Solve for p and count that many units from the vertex in the direction away from the directrix. (your focus should be inside the curve of your parabola)
Oh! i learnt about 8 different types of parabola! 1] y2 = 4ax 2] y2 = -4ax 3] x2 = 4ay 4] x2 = -4ay 5] (y-k)2 = 4a(x-h) 6) (y-k)2 = -4a(x-h) 7] (x-h)2 = 4a(y-k) 8] (x-h)2 = -4a(y-k)
when the function is in vertex form: y = a(x - h)2 + k, the point (h, k) is the vertex.
This equation yx3 k is that of a parabola. The variable h and k represent the coordinents of the vertex. The geometrical value k serves to move the graph of the parabola up or down along the line.
A parabola is not a shape, it is actually a curved line in a coordinate plane. It is shaped like a U turned in any direction. The two basic equations for it are y=a(x-h)2+k or x=a(y-k)2+h.
A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (-2, -3), and a point on it is (-1, -5) → -5 = a(-1 - -2)² + -3 → -5 = a(1)² - 3 → -5 = a - 3 → a = -2 → The coefficient of the x² term is -2.
-2
2
Y=a(x-h)+k is the vertex formula. Since the vertex is at (-2,-3) this parabola has the equation: y=a(x+2)^2-3 We can plug in x=-1 but we really need to know a, to solve for y. ( we can solve it, but we will have an a in the solution)
A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (3, 5), and a point on it is (-1, 6) → 6 = a(-1 - 3)² + 5 → 6 = a(-4)² + 5 → 1 = 16a → a = 1/16 → The coefficient of the x² term is 1/16
A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (2, -1), and a point on it is (5, 0) → 0 = a(5 - 2)² + -1 → 0 = a(3)² -1 → 1 = 9a → a = 1/9 → The coefficient of the x² term is 1/9