0.2 N HCl solution means 0.2 equivalents of HCl dissolved in 1 litre of water.
Normality = Molarity x n-factor
=> Molarity =Normality/n-factor=0.2/1=0.2 M
0.2 moles should be present in 1 litre of solution.
0.2moles =0.2 x 36.5 = 7.3 grams of HCl
=>Dissolve 7.3 grams of HCl in 1 litre if water to get a 0.2N solution.
To prepare a 0.2N HCl solution, you would need to dilute concentrated hydrochloric acid with water. Measure out the required volume of concentrated HCl (around 3.65 mL of concentrated HCl in 1 liter of solution) and dilute it with water to make a total volume of 1 liter. Be sure to wear appropriate PPE and handle the acid with care.
To prepare a 0.2N HCl solution from 1.0N HCl, you can dilute the 1.0N HCl solution by adding 4 parts of water to 1 part of the 1.0N HCl solution. This means combining 1 volume of 1.0N HCl with 4 volumes of water to obtain the desired 0.2N HCl solution.
To prepare a 10mM solution of Tris-HCl, you would weigh out the appropriate amount of Tris-HCl powder using a balance and dissolve it in water to make a final volume of solution. For example, to make 1L of 10mM Tris-HCl solution, you would need to dissolve 0.121g of Tris-HCl in 1L of water.
To prepare 1M Tris-HCl from a 10mM solution, you would need to dilute the 10mM solution by a factor of 100. This means you would mix 1 part of the 10mM solution with 99 parts of water to achieve a final concentration of 1M Tris-HCl.
To prepare 1 liter of 0.1N HCl solution from 12N HCl, you would need to dilute the 12N HCl by a factor of 120. To do this, you would add approximately 83.33 mL of 12N HCl to a container and then dilute it with water to reach a final volume of 1 liter. Make sure to mix the solution thoroughly after dilution.
To prepare a liter of 0.5N HCl solution, you would measure 50 mL of concentrated hydrochloric acid (37% HCl by mass) and dilute it to 1 liter with distilled water.
To prepare a 0.2N HCl solution from 1.0N HCl, you can dilute the 1.0N HCl solution by adding 4 parts of water to 1 part of the 1.0N HCl solution. This means combining 1 volume of 1.0N HCl with 4 volumes of water to obtain the desired 0.2N HCl solution.
To prepare a 10mM solution of Tris-HCl, you would weigh out the appropriate amount of Tris-HCl powder using a balance and dissolve it in water to make a final volume of solution. For example, to make 1L of 10mM Tris-HCl solution, you would need to dissolve 0.121g of Tris-HCl in 1L of water.
520 ml of HCl in 480 ml of water=1000ml = 5 N
To prepare 1M Tris-HCl from a 10mM solution, you would need to dilute the 10mM solution by a factor of 100. This means you would mix 1 part of the 10mM solution with 99 parts of water to achieve a final concentration of 1M Tris-HCl.
To prepare 1 liter of 0.1N HCl solution from 12N HCl, you would need to dilute the 12N HCl by a factor of 120. To do this, you would add approximately 83.33 mL of 12N HCl to a container and then dilute it with water to reach a final volume of 1 liter. Make sure to mix the solution thoroughly after dilution.
To prepare a liter of 0.5N HCl solution, you would measure 50 mL of concentrated hydrochloric acid (37% HCl by mass) and dilute it to 1 liter with distilled water.
To standardize an HCl solution with a primary standard Na2CO3 solution, first, prepare a Na2CO3 solution of known concentration. Then, titrate the Na2CO3 solution with the HCl solution using a suitable indicator until the equivalence point is reached. From the volume of HCl solution used and the known concentration of Na2CO3, you can calculate the exact concentration of the HCl solution.
To prepare a 1.3N HCl solution, you would need to dilute concentrated hydrochloric acid (usually 37% HCl) with water in a specific ratio. Measure out 1.3 moles of HCl in a specific volume and then dilute it to the desired final volume with water. Make sure to handle concentrated HCl with caution and follow proper safety protocols.
To prepare 10mL of a 25M HCl solution, you would need to dilute the concentrated HCl solution with the appropriate amount of water. For example, to make a 25M solution, you could start with a 10M HCl solution and dilute it appropriately. To determine the specific volume of each solution needed for dilution, you can use the formula C1V1 = C2V2, where C1 is the initial concentration, V1 is the volume of the initial solution, C2 is the final concentration, and V2 is the final volume.
To prepare 0.02N HCl solution, you would need to dilute a more concentrated HCl solution with water. Calculate the volume of concentrated HCl needed using the formula C1V1 = C2V2, where C1 is the concentration of the concentrated HCl, V1 is the volume needed, and C2 is the desired concentration (0.02N). Dilute the calculated volume of concentrated HCl with water to reach the desired final volume.
To prepare 1M HCl solution from 35% HCl solution, you would need to dilute the 35% HCl with water. Use the formula C1V1 = C2V2, where C1 is the initial concentration, V1 is the volume of the initial solution, C2 is the final concentration (1M), and V2 is the final volume (1 liter in this case). Calculate the volume of 35% HCl needed to achieve a 1M solution, then add water to make up the total volume to 1 liter.
To prepare 500ml of 0.12N HCl solution, you will need to dilute a concentrated hydrochloric acid solution. To do this, measure out 2.5ml of concentrated HCl (37% w/w) and dilute it to 500ml with distilled water. Be sure to wear appropriate safety equipment and handle the acid with caution.