To find the number of silver atoms in 3.88 g of silver, you can use the formula:
Number of atoms = (mass in grams / molar mass) x Avogadro's number
The molar mass of silver is 107.87 g/mol, and Avogadro's number is 6.022 x 10^23 mol^-1. Therefore, there are approximately 8.59 x 10^22 silver atoms in 3.88 g of silver.
To calculate the number of silver atoms in 3.68 g of silver, first determine the molar mass of silver (Ag) which is 107.87 g/mol. Next, calculate the number of moles of silver in 3.68 g by dividing the mass by the molar mass. Finally, use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles of silver to atoms.
To find the number of atoms in the sample, you would first calculate the number of moles of silver in 1 x 10^-8 g using the molar mass of silver (107.87 g/mol). Then, you would use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms.
To calculate the number of silver atoms in 3.76g of silver, you need to use Avogadro's number and the molar mass of silver. The molar mass of silver is 107.87 g/mol. First, calculate the number of moles in 3.76g of silver. Then, use Avogadro's number (6.022 x 10^23 atoms/mol) to find the number of silver atoms in that many moles.
To find the number of atoms in 20.5 g of silver, you first need to calculate the number of moles of silver using its molar mass (107.87 g/mol). Then, you can use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms.
The gram atomic mass of silver is 107.868 and that of gold is 196.967. Equal numbers of gram atoms of different elements contain equal numbers of atoms. Therefore, the mass of gold required to contain twice as many atoms as 2.74 g of gold is (2 X 2.74 X 196.967)/107.868 or 10.0 g of gold, to the justified number of significant digits.
2.17*10^22
To calculate the number of silver atoms in 3.68 g of silver, first determine the molar mass of silver (Ag) which is 107.87 g/mol. Next, calculate the number of moles of silver in 3.68 g by dividing the mass by the molar mass. Finally, use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles of silver to atoms.
A dozen is equal to 12, so there are 12 x 6.022 x 10^23 silver atoms in a mole. The number of dozens of silver atoms in the piece of jewelry would depend on the weight of the jewelry and the molar mass of silver.
To find the number of atoms in the sample, you would first calculate the number of moles of silver in 1 x 10^-8 g using the molar mass of silver (107.87 g/mol). Then, you would use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms.
To calculate the number of silver atoms in 3.76g of silver, you need to use Avogadro's number and the molar mass of silver. The molar mass of silver is 107.87 g/mol. First, calculate the number of moles in 3.76g of silver. Then, use Avogadro's number (6.022 x 10^23 atoms/mol) to find the number of silver atoms in that many moles.
To find the number of atoms in 20.5 g of silver, you first need to calculate the number of moles of silver using its molar mass (107.87 g/mol). Then, you can use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms.
Sterling silver is typically about 92.5% silver. To calculate the number of silver atoms in the jewelry piece, you'd first determine the mass of the silver in the jewelry (0.925 * 33.14 g) and then convert this mass to moles of silver (using the molar mass of silver). Finally, you'd use Avogadro's number to convert moles to atoms.
The gram atomic mass of silver is 107.868 and that of gold is 196.967. Equal numbers of gram atoms of different elements contain equal numbers of atoms. Therefore, the mass of gold required to contain twice as many atoms as 2.74 g of gold is (2 X 2.74 X 196.967)/107.868 or 10.0 g of gold, to the justified number of significant digits.
49.1740 g (6.02 x 1023 atoms) / (91.22 g) = 3.25 x 1023 atoms
2.09*10^22 This is how you figure it out: 3.74g divided by 107.87(the atomic mass of silver). Then you multiply the number you get by 6.022x10^23 (Avogadros number). And that's your answer.
A piece of jewelry can range from a small earring to a large necklace. In that case, there can also be varying number of moles of silver atoms in a piece of jewelry. Plus, not all jewelry contain silver in them. Thus, there is no specific answer to this question
To find the mass of 2.31024 atoms of silver, you can first calculate the molar mass of silver, which is 107.87 g/mol. Then, divide the number of atoms by Avogadro's number to get the amount in moles, and finally, multiply by the molar mass to get the mass in grams. The mass of 2.31024 atoms of silver would be approximately 4.33 x 10^-23 grams.