the answer is 12!
A neutral xenon atom would have 54 electrons filled in its electron shells.
In a cadmium atom, all 27 s orbitals are filled with electrons. Cadmium has 48 electrons, and the s sublevel can hold a total of 2 electrons per orbital, so 27 orbitals are needed to accommodate all the electrons.
There are two completely filled orbitals in this atom: the 1s orbital with 2 electrons and the 2p orbitals with 6 electrons. The 2s orbital and 3s orbital are not completely filled.
Arsenic has three electrons occupying the three 4p orbitals in its valence shell. Hund's first rule tells us that they will each occupy separate orbitals before they start to pair up. So there are three half-filled orbitals in an arsenic atom.
There are two orbitals that are completely filled in this atom: the 1s orbital with 2 electrons (1s2) and the 2s orbital with 2 electrons (2s2). The 2p orbital is not completely filled, as it should have a total of 6 electrons (2p6).
A neutral xenon atom would have 54 electrons filled in its electron shells.
5p, 5s
In a cadmium atom, all 27 s orbitals are filled with electrons. Cadmium has 48 electrons, and the s sublevel can hold a total of 2 electrons per orbital, so 27 orbitals are needed to accommodate all the electrons.
There are two completely filled orbitals in this atom: the 1s orbital with 2 electrons and the 2p orbitals with 6 electrons. The 2s orbital and 3s orbital are not completely filled.
Arsenic has three electrons occupying the three 4p orbitals in its valence shell. Hund's first rule tells us that they will each occupy separate orbitals before they start to pair up. So there are three half-filled orbitals in an arsenic atom.
There are two orbitals that are completely filled in this atom: the 1s orbital with 2 electrons (1s2) and the 2s orbital with 2 electrons (2s2). The 2p orbital is not completely filled, as it should have a total of 6 electrons (2p6).
In an atom of chromium, there are a total of 24 electrons, leading to a fully filled 3s orbital (2 electrons) and a fully filled 3p orbital (6 electrons). The 3d orbital would have 5 completely filled orbitals since it can hold a maximum of 10 electrons.
If the s and p sublevels are filled in an atom of an element in period 3, then the orbitals filled in this atom would be 1s, 2s, 2p, 3s, and 3p. Each s sublevel can hold a maximum of 2 electrons, while each p sublevel can hold a maximum of 6 electrons.
No. Xenon is a neutral element. It has completely filled valence orbitals, hence is stable. It does not form anion.
A neutral xenon atom has 54 electrons. Two of its electron shells would be completely filled, with 2 and 8 electrons, leaving 44 electrons in the remaining electron shells.
Selenium has four half-filled orbitals - the 4s, 4p_x, 4p_y, and 4p_z orbitals. This is because selenium has four electrons in its 4th energy level.
An atom of xenon contains 54 electrons, the atomic number of xenon.