skateboard
A moving skateboard has greater momentum than a heavy truck at rest. Momentum is determined by both the mass and velocity of an object, so even though the truck may have more mass, the skateboard's velocity contributes more to its momentum.
skateboard.....if velocity is zero,then momentum is also zero.
The momentum of a moving object is determined by its mass and velocity. The greater the mass and the faster the velocity of the object, the greater its momentum. Momentum is a vector quantity, meaning it has both magnitude and direction.
A fast-moving car has more momentum than a slow-moving car because momentum is directly proportional to an object's velocity. The momentum of an object is the product of its mass and velocity, so the faster the object is moving, the greater its momentum.
Speed directly affects momentum. Momentum is the product of an object's mass and its velocity, so the faster an object is moving, the higher its momentum will be. This means that an object moving at a higher speed will have greater momentum compared to the same object moving at a lower speed.
Momentum is the property of a moving object that is determined by its mass and velocity. It is a vector quantity, meaning it has both magnitude and direction. The greater the mass or velocity of an object, the greater its momentum.
Momentum is calculated as the product of mass and velocity. Since a car typically has a much greater mass than a bike, even when both are moving at the same speed, the car will have greater momentum. Therefore, the car has greater momentum.
The SUV would have the greater momentum because momentum is the product of an object's mass and velocity. Since an SUV typically has greater mass than a compact car, it would have greater momentum at the same velocity.
Momentum (p) equals mass times velocity, or p=mv, and I assume that when the question says "moving at 64 km" it is referring to the cars velocity. The car will have a momentum of 32000 kg*km/s. The cart will have a momentum of 3000 kg*km/s. The truck will have a momentum of 32000 kg*km/s. The car and the truck both have a greater momentum than the cart.
The momentum of any object depends on its mass and its speed. If a car and a bike are both moving at the same speed, then the car has more momentum because it has more mass than the bike. If the car and the bike are moving at different speeds, then we need to know the speeds of each, in order to make any determination about their respective momenta.
The real car has more mass than the toy car, which contributes to its higher momentum despite moving at the same speed. Momentum is defined as the product of an object's mass and its velocity, so the real car's greater mass results in greater momentum.
Since momentum is mass x velocity, the vehicle with the greater mass would have more momentum in this case.