answersLogoWhite

0


Best Answer

it depends on what the car is doing, everything is effected my gravity which is pushing down and the surface its touching(wheels to the pavement) is causing friction, then when its rolling you also have rolling mass and contact patch of the wheels and weight.. you need to be a little more specific

User Avatar

Wiki User

βˆ™ 10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How does friction effect a toy model car?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the effect of friction of a speed of a toy car?

If the toy car is on a smooth surface, there is less friction. Therefore, the car will most likely go faster. On the other hand, if the car is on a bumpy surface, there is plenty of friction. Therefore, the car will most likely go slower and stop at a shorter distance.


Does the weight on a toy car effect how far it travles?

Yes, the weight of a toy car can affect how far it travels. A heavier toy car may experience more friction and require more force to overcome resistance, potentially reducing the distance it travels. Conversely, a lighter toy car may be able to travel farther with less friction and force needed.


Why does the texture effect the friction of a toy car?

The texture of a surface affects the friction of a toy car because rougher textures provide more resistance and increase friction, making it harder for the wheels to move smoothly. Smoother textures create less friction, allowing the wheels to move more easily. This difference in resistance can impact how easily the toy car moves across different surfaces.


How is energy lost in a toy car?

Friction and wind resistance.


How far can a toy car go on a ramp?

The distance a toy car can travel on a ramp depends on factors like the incline of the ramp, the initial velocity of the car, and any friction present. In general, a toy car on a ramp can roll for a distance equivalent to the length of the ramp if there is no significant friction or obstacles in its path.


How does surface material effect how far a toy car will roll?

Surface material can impact how far a toy car will roll. Smooth surfaces like hardwood floors or concrete allow for less friction and the car can roll farther. Rough surfaces like carpet or grass create more friction, slowing down the car and reducing the distance it can travel.


Friction affects stopping distance of a toy car rolling down?

Friction plays a key role in determining the stopping distance of a toy car rolling down a surface. The greater the friction between the wheels of the car and the surface, the shorter the stopping distance will be. Conversely, if there is less friction, the stopping distance will be longer. Other factors such as the speed of the toy car, the weight of the car, and the surface roughness will also influence the stopping distance.


Can the roughness of a ramp slow down a toy car?

Yes, the roughness of a ramp can slow down a toy car because friction between the rough surface of the ramp and the wheels of the toy car will create resistance, causing the car to lose some of its kinetic energy as heat. This will result in the car moving more slowly compared to a ramp with a smoother surface.


Is the friction responsible for the toy car being pulled up the ramp?

Yes I think


Will a toy car go further on carpet or wood surface?

Wood. There is less friction.


Is there friction when a toy car rolls down a ramp?

Yes Friction between the wheels and the ramp and also friction between the body of the car and the air (unless the car and ramp are in a perfect vacuum) There will be additional friction in the bearings or ball race of the wheel / axle too


Why does a toy car rolling at constant speed down a straight incline track slow down when reaching the base of the incline?

The toy car slows down at the base of the incline due to friction between the wheels and the surface of the incline. Friction causes a resistance force that acts opposite to the direction of the car’s motion, leading to a decrease in speed. This loss of kinetic energy due to friction is converted into heat, sound, and deformation of the wheels.