There is only one geostationary orbit because in order for any mass m to orbit the Earth (ME) the gravitational force:
EQ1: Fg = GmME/r^2
has to be such that it is equal to the required centripetal force for uniform circular motion:
EQ2: Fc = mv^2/r
where v is the velocity of m at radius r (distance from the center of the Earth) and:
EQ3: v = 2(pi)(r)(f)
f is the frequency of rotation in revolutions per second. For geostationary orbit the satellite must be in a fixed position (it must have the same frequency of rotation or angular velocity as the Earth's rotation) relative to the Earth and orbit above the Earth's equator.
The necessary velocity to satisfy Fg = Fc is a specific value, therefore (since pi and f are fixed values) r is the only variable in EQ3. There is a specific orbital radius for geostationary orbit of any mass m.
Geostationary is the moving orbit in the plane of the equator. Geostationary satellites are 22,300 miles above the Earths surface, and remain stationary at a fixed point. Weather and communication satellites are examples of geostationary satellites.
it's hot. ;)
juhrinfhrihgyrtng
A polar orbit is an Orbit in which a Satellite passes above or nearly above both of the Geographical poles of the body (usually a planet such as the Earth, but possibly another body such as the Sun being orbited on each revolution. It therefore has an Inclination of (or very close to) 90 degrees to the Equator. Except in the special case of a polar Geosynchronous orbit, a satellite in a polar orbit will pass over the equator at a different Longitude on each of its orbits.A geostationary orbit (GEO) is a circular orbit directly above the Earth's Equator From the ground, a geostationary object appears motionless in the sky and is therefore the Orbit of most interest to operators of Communication Satellites. Their orbital periods (time taken to revolve around earth) is exactly the same as the planet's (such as Earth's) rotational period. The Geosynchronous orbit is approximately 36,000 km above Earth's surface.geostionary satellites are positioned at an exact height above the earth, at this height they orbit the earth at the same speed at which the earth rotates on its axis whereas polar satellites have a much lower orbit, orbiting the earth quite quickly, scanning different areas of the earth at fairly infrequent periods.
A geostationary orbit achieved by being in a location where the satellite's orbital period is 24 hours. This means the satellite is about 36,000 km (22,000 miles) above the Earth's surface. All orbits must therefore be over the equator. Every orbit around the earth looks like a circular (or elliptical) ring whose center (or one foci) is at the center of gravity of the Earth. An orbit exactly above the equator is one such orbit, but any orbit can be tilted as long as the center (or focus) stays at the Earth's center and the whole orbit is flat like a disk. On various NASA maps this makes the orbit look like a sinewave, but on a globe it stays a flat circle (or ellipse). On "Star Trek" I have seen errors a number of times on "Geostationary orbit over the North Pole", well you can't do that. Likewise, a "Lunar-stationary orbit" is impossible for a spacecraft, since Earth itself is already IN THE STATIONARY ORBIT POSITION! Remember that a geostationary orbit looks like it is always over the same spot on the Earth (or other body). If you were on the Moon, the Earth would be in the same position in the sky at all times.
No. Geostationary orbits are equatorial, but equatorial orbits are not necessarily geostationary. To be geostationary, the orbit needs to be equatorial, circular and at the altitude such that one orbit takes one sidereal day (approximately 24 hours 3 minutes 56 seconds. ) An equatorial orbit need only be located above the equator, may have any period and need not be circular.
Satellites cannot orbit one country. They may remain in geostationary orbit, but only at the equator. Therefore no satellite stays above only New Zealand.
the communication satellites take 24 hours to complete their one revolution around the earthso the orbit of revolving satellite is called geostationary orbit.
Geostationary orbit is preferred for satellite communication systems because the satellite appears to be fixed in the sky, allowing for continuous communication with stationary ground stations. This eliminates the need for tracking equipment on the ground. Additionally, the geostationary orbit provides a large coverage area, making it ideal for broadcasting and communication services.
A geostationary orbit is an orbit of the Earth that is circular, over the equator, and at the right distance to have a period of 24 hours. A satellite in such an orbit appears to hang motionless, always at the same point in the sky Anything else is a non-geostationary orbit. A satellite in one of those appears to move in the sky, so that if you want to communicate with it, you need a movable dish.
Geostationary is the moving orbit in the plane of the equator. Geostationary satellites are 22,300 miles above the Earths surface, and remain stationary at a fixed point. Weather and communication satellites are examples of geostationary satellites.
Its closer to the earth. Can say much more without know the velocity of the satellites
A geostationary orbit is an orbit of the Earth that is circular, over the equator, and at the right distance to have a period of 24 hours. A satellite in such an orbit appears to hang motionless, always at the same point in the sky Anything else is a non-geostationary orbit. A satellite in one of those appears to move in the sky, so that if you want to communicate with it, you need a movable dish.
it's hot. ;)
Doesn't work like that, a satellite can't orbit one country. It can stay in geostationary orbit over some, but that's it. Sputnik 1 orbited the whole Earth.
No, the moon is not in a geostationary orbit around the Earth. The moon orbits the Earth in an elliptical path, causing its distance and position to vary constantly. Geostationary orbits are circular and are typically much closer to Earth than the moon.
The time for one (stable) orbit is directly linked to the orbital radius. At one particular radius (geostationary), the resultant stable orbit velocity is exactly enough to match the rotation of the earth, keeping the satellite overhead at all times. This geostationary radius is approximately 42 000 km from earths centre and most geostationary satellites are roughly in the equatorial plane.