this is what my anatomy & physiology book states...
1. an mRNA molecule binds to the small ribosomal subunit at the mRNA biding site. A special tRNA, called initiator tRNA, binds to the start codon (AUG) on mRNA, where translation begins. The tRNA anticodon (UAC) attaches to the mRNA codon (AUG) by pairing between the complementary bases. Besides being the start codon, AUG is also the codon for the amino acid methionine. Thus, methionine is always the first amino acid in a growing polypeptide
2. Next, the large ribosomal subunit attaches to the small ribosomal subunit-mRNA complex, creating a functional ribosome. The initiator tRNA, with its amino acid (methionine), fits into the P site of the ribosome.
3. The anticodon of another tRNA with its attached amino acid pairs with the second mRNA codon at the A site of the ribosome.
4. A component of the large ribosomal subunit catalyzes the formation of a peptide bond between methionine, which separates from its tRNA at the P site, and the amino acid carried by the tRNA at the A site.
5. After peptide bond formation, the empty tRNA at the P site detaches from the ribosome, and the ribosome shifts the mRNA strand by one codon. The tRNA in the A site bearing the two-peptide protein shifts into the P site, allowing another tRNA with its amino acid to bind to a newly exposed codon at the A site. Steps 3 through 5 occur repeatedly, and the protein lengthens progressively.
6. Protein synthesis ends when the ribosome reaches a stop codon at the A site, which causes the completed protein to detach from the final tRNA. When the tRNA vacates the A site, the ribosome splits into its large and small subunits.
In your book (probably), the titles it gives are
"1: Messenger RNA Production
2: Messenger RNA Attaches to a Ribosome
3: Transfer RNA Attaches to Messenger RNA
4: Protein Production Continues
The order of amino acids in a protein is determined by the sequence of nucleotides in the gene that codes for that protein. This sequence is transcribed into messenger RNA (mRNA) and then translated into a specific sequence of amino acids during protein synthesis.
During protein synthesis, DNA serves as a template for mRNA to be transcribed. The mRNA base pairs with the complementary DNA strand, forming a sequence that codes for specific amino acids. This mRNA sequence is then translated by ribosomes to assemble the corresponding protein.
The gene within a chromosome contains the specific sequence of nucleotides that codes for the amino acid sequence of a protein. This gene is transcribed into messenger RNA (mRNA), which is then translated into a specific sequence of amino acids during protein synthesis.
Yes, the anticodon is a sequence of three nucleotides on tRNA that pairs with the corresponding codon on mRNA during protein synthesis to code for a specific amino acid.
During protein synthesis, a base pair in DNA codes for a specific amino acid. This relationship is crucial because the sequence of base pairs determines the sequence of amino acids in a protein, ultimately influencing its structure and function.
Mutation usually causes the entire base sequence to defect. This usually happens during the protein synthesis.
Amino acids are linked together in a specific sequence based on the instructions from mRNA during protein synthesis. Once the correct amino acid sequence is assembled, it folds into a functional protein with a specific structure and function. Any errors in the amino acid sequence can lead to misfolded proteins or protein dysfunction.
tRNA
Primary structure of the protein is simply its amino acid sequence. It is the sequence in which amino acids are added during protein synthesis.
During protein synthesis, the nucleotide sequence specifies a particular species of amino acid. This is accomplished through the genetic code, where a sequence of three nucleotides (codon) corresponds to a specific amino acid. The sequence of codons ultimately determines the sequence of amino acids in a protein.
The order of amino acids in a protein is determined by the sequence of nucleotides in the gene that codes for that protein. This sequence is transcribed into messenger RNA (mRNA) and then translated into a specific sequence of amino acids during protein synthesis.
During protein synthesis, DNA serves as a template for mRNA to be transcribed. The mRNA base pairs with the complementary DNA strand, forming a sequence that codes for specific amino acids. This mRNA sequence is then translated by ribosomes to assemble the corresponding protein.
The gene within a chromosome contains the specific sequence of nucleotides that codes for the amino acid sequence of a protein. This gene is transcribed into messenger RNA (mRNA), which is then translated into a specific sequence of amino acids during protein synthesis.
Yes, the anticodon is a sequence of three nucleotides on tRNA that pairs with the corresponding codon on mRNA during protein synthesis to code for a specific amino acid.
During protein synthesis, a base pair in DNA codes for a specific amino acid. This relationship is crucial because the sequence of base pairs determines the sequence of amino acids in a protein, ultimately influencing its structure and function.
Mutations during protein synthesis can be caused by errors in DNA replication, exposure to mutagens like radiation or chemicals, or spontaneous changes in the genetic code. These mutations can alter the sequence of amino acids in a protein, potentially affecting its structure and function.
During protein synthesis, three continuous bases on a messenger RNA (mRNA) molecule, known as a codon, encode different amino acids. Codons on the mRNA are translated into the amino acid sequence of a protein by the ribosome.